
SECURITY CLASSIFICATION OF THIS PAGE
...

REPORT DOCUMENTATION PAGE Form A oved

la. REPOR' tECURiTY CLASSIFICATiON lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2i .c,,r^'ATInl AIITHORITY 3. DISTRIBuION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;
21 DISTRIBUTION UNLIMITED.

4 5-2 2 1 5. MONITORING ORGANIZATION REPORT NUMBER(S)
A2 146 AFIT/CI/CIA- 90-010

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT (If applicable) AFIT/CIA
Univ of Maryland I

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

87c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification) (UNCLASSIFIED)

Multiprocessor Realization of Neural Networks

12. PERSONAL AUTHOR(S)

Robert William Bennington
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

IMMSeDISSERTATION FROM TO _ 1990 334
16. SUPPLEMENTARY NOTATION AEPROVED FUR PUBLIC RELEA IAW AFR 190-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTICS ELECTE
MAY 3 0 1990

D% D

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[3 UNCLASSIFIED/UNLIMITED EC SAME AS RPT. E DTIC USERS UNCLASSIFIED
27a .,AMF OF EWPONS;IRLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Previous e(ViQy q obsolete. SECURITY CLASSIFICATION OF THIS PAGE

0AFIT/CI
"OVERPRINT"

MULTIPROCESSOR REALIZATION

OF NEURAL NETWORKS

by

Robert William Bennington

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of /
Doctor of Philosophy I ot,,

1990
"-A---------"

ACcesion For

NiJS CR &I

DTIC 1S

Advisory Committee: By
Disributo,

Professor Nicholas DeClaris, Chairman/Advisor

Professor Herbert Levitan , .
Professor Robert Newcomb -Cor
Professor Panos Ligomenides Dist , CJ
Associate Professor Charles Silio Jr

© Copyright by

Robert William Bennington

1990

ABSTRACT

Title of Dissertation: Multiprocessor Realization of Neural Networks

Robert William Bennington, Doctor of Philosophy, 1990

Dissertation directed by: Nicholas DeClaris, Professor,
Electrical Engineering Department

This research provides a foundation for implementing neural networks

on multiprocessor systems in order to increase execution speeds and to ac-

comodate more complex neural networks. The emphasis is on the use of af-

fordable coarse grain multiprocessors to implement commerically available

neural network simulators currently being run on single processor systems. A

conceptual framework is presented based on the concc '- , f program decom-

position, load balancing, communication overhead, and process synchroniza-

tion. Four methodologies are then presented for optimizing execution times.

A set of metrics is also introduced which make it possible to measure the per-

formance enhancements over single processor systems, and analyze the effects

of communications overhead, load balancing, and syn,.hronization for various

network decompositions.

The application of these four methodologies to two neural network

simulators on a multiprocessor computer system is discussed in detail. They

are illustrated with practical implementations of networks ranging in size from

six to twenty thousand connections. Two of the methodologies, the Pipeline

and Hybrid approaches, exhibit speedups approaching the possible upper limits.

The theoretical significant of this dissertation research is that it

provides a basis for achieving efficient multiprocessor implmentation of highly

and massive neural networks. Traditionally, neural network research and

development requires a considerable amount of time be spent in repeatedly

evaluating and modifying network architecture and algorithms. As such, the

engineering value of dissertation is that the time required to repeatedly execute

networks in research and development can be significantly reduced.

Dedication

Dedicated to

my loving wife, Patricia and

my three beautiful daughters

Kelly, Katy and Kerry

ii

Acknowledgment

I would like to thank all my friends at work and at the university for

all their support and encouragement during these past five years.

To Professor Nicholas DeClaris, my dissertation advisor, for his

help in organizing and shaping the ideas presented in this dissertation and

his constant encouragement and belief in me.

To Professors Robert Newcomb and Charles Silio for their practical

advise and support during my years as a graduate student.

To Professor Herbert Levitan, for his friendship, advise, support,

and especially for teaching me how to learn.

In addition, I would like to thank Mr Dennis Buck and Miss Colleen

Goebel for their expert assistance in the preparation of this manuscript.

I would also like to express my thanks and love to my three lovely

daughters, Kelly, Katy, and Kerry who, for most of their lives, have had to

settle for a part-time daddy whose job it was to go to school.

Most of all, I would like to thank my wife, Patricia for her

unwavering support, endless patience, and love, without which none of this

would have been possible.

Bob Bennington

Beavercreek , Ohio

April 1990

111

Table of Contents

Chapter I Introduction 1
Research Goals and Objectives 5

Main Accomplishments 6

Organization 7

Chapter Ii Artifical Neural Networks 8
Introduction 8

Biological Neurons 9
Artifical Neural Networks 11

How Neural Networks Work 13

Network Architecture 17

Network Learning 21

Backpropagation Learning Paradigm 25

Background 25
Operation of Backpropagation Algorithm 26

Summary 32

Chapter III Multiprocessor Systems 33
Introduction 33

Overview of Multiprocessor Systems 33

Processor Granularity 34

Fine Grain 36

Coarse Grain 37

Memory Types 38
Multiprocessor Architectures 39

and Communication Networks 41

Shared Bus 42

Cross bar 46

Hypercubes 47

Multistage Switching 49

Masscomp 5700 Computer System 53

Buses 54
CMPU Modules 58

Memory Management Hardware 58
MULTIBUS Adapter 59
Cache 60

..: iv

Auxiliary Function Module 61
Central Memory Modules 62

Summary 63

Chapter IV Implementing Neural Networks on Multiprocessors 64
Introduction 64
Decomposition 66
Load Balancing 68
Communication Overhead 70
Synchronization 71
Multiprocessor Performance Metrics 73
Summary 78

Chapter V Multiprocessor Methodologies 79
Introduction 79
Layer Method 80
Cross-Layer Method 86
Pipeline Method 90
Hybrid Epoch-Pattern Method 96
Example Implementation of Methodologies 103

Layer Method 105
Cross-Layer Method 110
Pipeline Method 112
Hybrid Epoch-Pattern Method 116
Extension of Methodologies to other Neural Networks 120

Summary 120

Chapter VI Applications 123
Introduction 123
Applications Testbed 123
Experimental Design 127
Modification Criteria 128
Precursors to Implementation 129

Metrics 129
Network Decomposition 130
Synchronization 133
Shared Memory 133

Layer Method Results and Analysis 134
Cross-Layer Method Results and Analysis 142

v

Pipeline Method Results and Analysis 144
Hybrid Epoch-Pattern Method Results and Analysis 154
Summary 163

Chapter VII Conclusions and Recommendations 165
General Conclusions 165
Recommendations 167

Appendix 1 Test Neural Networks 169
Appendix 2 C Source Code for Stats Program 170
Appendix 3 Modified PDP Source Code for 172

Pipeline Method
Appendix 4 Modified SDMO Source Code for 218

Pipeline Method
Appendix 5 Modified PDP Source Code for 247

Hybrid Epoch-Pattern Method
Appendix 6 Modified SDMO source Code for 284

Hybrid Epoch-Pattern Method
References 315

vi

List of Figures

Fig 2-1 Typical biological neuron 10
Fig 2-2 Neural network processing element 13
Fig 2-3 Sigmoid function 14
Fig 2-4 Single and multilayer networks 18
Fig 3-1 Coarse and fine grain architectures 43
Fig 3-- Common communication network topologies 44
Fig 3-3 Shared bus system 45
Fig 3-4 Cross bar system 46
Fig 3-5 Hypercube architectures 48
Fig 3-6 Shuffle exchange network 50
Fig 3-7 Shuffle exchange network with hot spot 52
Fig 3-8 Typical Masscomp configuration 55
Fig 5-1 Layer m .hod of network decompositio:, 81
Fig 5-2 Pipelining of data through layers 83
Fig 5-3 Layer assignment for a 2d Hypercube 85
Fig 5-4 Cross-layer decomposition 88
Fig 5-5 Cross-layer with differing number of nodes 88
Fig 5-6 Pipeline approach 96
Fig 5-7 Hybrid epoch-pattern training 99
Fig 5-8 Hybrid epoch-pattern methodology 101
Fig 5-9 Pipelining of pseudo epochs 102
Fig 5-10 1881 Three layer Network 105
Fig 5-11 Layer Decomposition of 1881 Network 105
Fig 5-12 Pipeline Synchronization of 1881 network 108
Fig 5-13 Cross-layer decomposition of 1881 network 114
Fig 5-14 Decomposition and timing diagram for 1881 114

network using Pipeline
Fig 5-15 Decomposition and timing diagram for 1881 117

network using Hybrid epoch-pattern methodology
Fig 6-1 Sample output from profile command 130
Fig 6-2 C code for parent and child process 132
Fig 6-3 Shared memory allocation code 135
Fig 6-4 Two processor decomposition 136
Fig 6-5 PDP speedup for four patterns 137
Fig 6-6 PDP speedup for twenty patterns 137
Fig 6-7 Processing times for one pattern 140

vii

Fig 6-8 Processing times for 4 & 20 patterns 141
Fig 6-9 424 Cross-layer decomposition 143
Fig 6-10 PDP decomposition for pipeline method 145
Fig 6-11 SDMO decomposition for pipeline method 146
Fig 6-12 PDP speedup with pipeline method 149
Fig 6-13 SDMO speedup with pipeline method 150
Fig 6-14 Contention for shared bus 153

.g 6-15 PDP decomposition for hybrid method 155
Fig 6-16 SDMO decomposition for hybrid method 156
Fig 6-17 PDP speedup 4 pat hybrid vs pattern 158
Fig 6-18 SDMO speedup 4 pat hybrid vs pattern 158
Fig 6-19 PDP speedup 10 pat hybrid vs pattern 159
Fig 6-20 SDMO speedup 10 pat hybrid vs pattern 159
Fig 6-21 PDP speedup 4 pattern hybrid vs epoch 160
Fig 6-22 SDMO speedup 4 pattern hybrid vs epoch 160
Fig 6-23 PDP speedup 10 pattern hybrid vs epoch 161
Fig 6-24 SDMO speedup 10 pattern hybrid vs epoch 161

viii

List of Tables

Table 2-1 Popular neural network architectures 20

Table 2-2 Backpropagation algorithm 31

Table 5-1 Comparisons of Methodologies 104

Table 5-2 Comparisons of Methodologies for 1881 network 119

Table 5-3 Comparisons of Methodologies for Several 121
Neural Networks

Table 6-1 Methodologies testbed 124

Table 6-2 Sequential version execution times 138

Table 6-3 Layer method execution times 138

ix

Chapter I
Introduction

Over the past five years there has been a resurgence in the research and

development of artificial neural networks. A great deal of work has been done

in attempts to have these biologically inspired networks mimic some of the

properties of real neural networks. It is hoped that these artificial networks

will be able to duplicate such properties as learning, massive parallelism, and

fault tolerance [Caudill 1988a] [Ballard 1987] [D'Autrechy 1987] [Small 1983].

As such, researchers have applied neural networks to a variety of areas where

conventional computer programs and expert systems fail, or show limited suc-

cess. Such areas include character recognition [Burr 86], speech recognition

[Burr 86] [Hwang 87] [Lippmann 87] [Peeling 86], text-to-speech recognition

[Sejnowski 87], signal prediction [Lapedes 87], and protein structure analysis

[Qian 88] [Levin 88].

Most, if not all, of the research being done in neural networks is aided

by the use of a wide variety of computer systems running software simulations

of these networks. Some of these simulations are being run on massively paral-

lel processing computers such as the Connectionist Machine [Hillis 1984, Blel-

loch and Rosenberg 1987]. In such a machine, each node is represented by one

1

or more simple microprocessors with the interconnections between them

mediated by a communication network, which is configured to mimic the con-

nections of the neural network under investigation [Hillis 1984]. These types of

systems use programming languages that have been developed to handle the

special architecture and concurrent operating requirements of the system.

Other simulations are being run on specially developed neurocomputers

[Aseo 1987] [Hecht-Nielsen 19881. These neurocomputers are coprocessors

that have been designed to implement one type of network (e.g. Hopfield,

Avalanche, or Madaline), or a small number of related types (e.g. Backpropaga-

tion, Boltzmann, Cauchy, or Counterpropagation networks). They are con-

nected to standard serial computers through a shared data bus or a peripheral

interconnect, much like other external peripheral devices (e.g. a hard disk or

printer). The standard computers act as the host, shuffling data into and out of

the neurocomputer. The neural network, which the neurocomputer is im-

plementing, does the actual data processing [Hecht-Neilsen 1988]. Unique

software, developed specifically for the neurocomputers, is used for defining

the network architecture and controlling the flow of data.

Because of the widespread availability of conventional serial computers,

such as IBMs, SUNs, DECs, and VAX'es, most simulations are performed on

such machines [Anderson 1983] [Klopf 1986] [Reggia 1985] [Fukushima 1983].

In general, researchers use these systems to run programs specifically written

for their particular research needs [Fukushima 1983] or they make use of

2

general purpose neural network simulation programs such as MIRRORS I/LI,

Rochester Connectionist Simulator, Parallel Distributed Processor (PDP)

Simulator, and P3 [D'Autrechy 1987] [Small 1983] [Goddard 1987] [McClelland

& Rumelhart 1988]. These general purpose simulation programs are written in

conventional programming languages such as LISP and C.

Unfortunately, computer usage in neural network research falls into two

extreme catagories that each have their own unique problems. At one end of

the spectrum are the single processor systems. With these systems, each node

of the neural network is being processed sequentially by a single processor.

Thus, one has the situation where the highly distributed architecture of a neural

network is being modeled on a conventional computer system with one proces-

sor.

A second, more immediate problem on single processor systems, con-

cerns processor speed. Although processor clock rates have been increasing, re-

searchers have been steadily increasing the number of nodes and interconnec-

tions of networks, and applying more complex learning and transfer functions,

in order to make the networks more adept at mimicking the cognitive functions

of the brain. It is estimated that even relatively simple applications of these net-

works are likely to require thousands of processing units, and tens of thousands

of interconnections, and that more sophisticated applications might require mil-

lions of processing units and billions of interconnections [Will 1987]. Thus, the

overall result is that simulations are often extremely slow because of the sheer

3

size of the network and the large number of coi-,putations, and researchers are

often limited in the size of the networks that can be practically simulated [Gii-

bert 1988].

At the other end of the spectrum are the fine grain parallel systems.

These systems are configured such that one or more simple processing ele-

ments are used to represent a node in a neural network. Because of the num-

ber of processing elements involved, communications between nodes is typical-

ly via links with nearest neighbors and message passing to communicate with

remote nodes. A good example of this type of system is the Connection

Machine with its hypercube topology.

There are two main problems associated with these fine grain systems

when implementing neural networks. While they are able to simulate large net-

works, they are fairly inflexible to changes in network architecture. That is to

say, they require a lot of forethought on how the network should be imple-

mented on the computer system, and it takes a long time to program the im-

plementation. Thus, any gain in simulation speed can be easily offset by chan-

ges in network topology that often occur when experimenting with new and dif-

ferent networks.

The second problem area is in node communications. Because neural

networks are highly connected, a high percentage of computer time is spent

routing messages to the proper nodes. While efficient layout schemes alleviate

4

some of this problem, it is still a significant factor that slows down neural net-

work simulations [Blelloch and Rosenberg, 19871.

Research Goal and Objectives

The research reported in this dissertation focuses on simulating neural

networks on coarse grain computer systems to alleviate some of the problems

exhibited by serial and massively parallel system simulations. Coarse grain sys-

tems can be characterized as having several powerful processors (compared to

fine grain systems) with some local memory, and having a portion of main

memory that can be shared by all the processors. Examples of such systems in-

clude the Sequent, Butterfly, and Masscomp computer systems.

The main goal of this dissertation research is to lay the foundation for

the implementation of neural network technology on multiprocessor systems to

increase simulation speeds and overall network size capabilities. To achieve

this goal, several research objectives were established:

o Review & evaluate several neural network paradigms for multi-

processor implementation

o Review and evaluate available coarse grain computer systems

o Define a set of metrics for evaluating speed up of neural net-

work simulations

o Evaluate the simularities in the architectures of neural net-

works and multiprocessor systems

5

o Examine and define those key concepts for the efficient im-

plementation of a neural network on a multiprocessor system

o Develop methodologies for the implementation of neural net-

work simulators on multiprocessor systems

o Apply the developed methodologies to commerically available

software on a coarse grain computer system

Main Accomplishments

This dissertation's unique contributions to the advancement of neural

network research are as follows:

o Development of four methodologies for implementing neural

networks on multiprocessor systems: Layer, Cross-layer,

Pipeline, and Hybrid Epoch Pattern

o Realization of average speedups of 1.66, utilizing the Pipeline

method, and 2.0, utilizing the Hybrid Epoch-Pattern method,

on a dual processor system implementation of several neural net-

work simulators

" Development of a hybrid epoch-pattern training algorithm for

multiprocessor implementation

o Development of a set of metrics that make it possible to

measure performance enhancements over single processor sys-

tems and to analyze the effects of communication overhead and

load balancing

o Successfully demonstrated the benefits of several methodologies

for the immediate application to the R&D phases of neural net-

work research

6

o Establishment of a basis for further work in multiprocessor im-

plementation of neural networks

Organization

This dissertation is organized into eight chapters. Chapter two discusses

background information on neural networks and various learning paradigms.

Chapter three discusses material on coarse and fine grain multiprocessor sys-

tems. Chapter four details the challenge of implementing neural networks on

multiprocessors. Chapter five discusses the four methodologies for implement-

ing neural networks on coarse grain systems. Chapter six discusses the applica-

tion of the methodologies to a Masscomp 5700 dual processor system and

several neural network simulators. Chapter seven discusses my general con-

clusions and recommendations for the future work.

7

Chapter II

Artificial Neural Networks

The purpose of this chapter is to provide an introduction to artificial

neural networks. It describes what artificial neural networks are and how they

compare with their biological counterparts. The chapter details how artificial

neural networks work, how they learn, and the different methods used to train

them. It also describes several neural network architectures. The chapter

closes with a detailed description of the backpropagation architecture as a

means of showing how network topology, learning, and training interrelate.

Introduction

The study of neural networks and their properties is one approach being

taken to model the gross structure of the brain, in an attempt to learn more

about how the brain functions. These networks are called "neural" because

they resemble and mimic the dense population of neurons and their axonal and

synaptic processes that constitute the brain. As stated by Will [1987], The prin-

ciple assumption behind the neural network approach is that real intelligence is

most readily achievable by mechanisms that closely resemble those mechanisms

that exist in the human brain."

8

Whether or not these networks truly resemble, or operate in the same

manner as the brain, is not of fundamental importance. What is important, is

that the behavior exhibited by neural networks might enable researchers to

develop theories and uncover basic principles that would explain the operation

of the brain. From a more practical standpoint, much of the ongoing research

is not so much concerned with how the brain operates per say, but rather how

to build networks that exhibit such intelligent characteristics as fault tolerance,

massive parallelism, and learning.

Many researchers feel that neural networks are very crude models of the

brain, that pale in comparison to the capabilities of the brain. As such, they

feel the word "neural" is inappropriate and prefer to describe these networks as

parallel distributed processing systems, associative models, or connectionist net-

works, to emphasis their abstract nature [Rumelhart & McClelland 1986,

Feldman & Ballard 1982, Fahlman & Hinton 1987, Will 1987]. Regardless of

which term is used, they are generally accepted as being synonymous. We will

use the term neural networks in this paper.

Biological Neurons

Despite the crudeness of neural networks, it is still important to under-

stand the very basics of biological neurons. The following discussion, albeit

brief, gives one a feel for the basis upon which neural networks are built.

The human brain is composed of an estimated 10 neurons. These

neurons communicate throughout the brain and body via nerve fibers that

9

make an estimated 1015 interconnections called synapses. While neurons are

biologically similar to other types of cells in the body, they possess the unique

capabilities of receiving, processing, and transmitting electo-chemical signals.

These signals are sent over neural pathways that make up the brain's com-

munication system [Wasserman 89].

CELL BODY

y AXON DENDRITES

SYNAPSE

Figure 2-1

Biological Neuron

Figure 2-1 shows a typical neuron. It consists of three major parts; the

cell body, the dendrites, and the axon. The dendrites extend from the cell body

where they make connections, called synapses, with other neurons. The

dendrites receive signals from other neurons via these synapses and conduct the

incoming impulses to the cell body where they are summed. Some of the impul-

ses tend to excite the cell while others try to inhibit the cell from firing. If the

summation of all the inputs at the cell body exceeds a threshold, the cell fires,

sending an electrical impulse down the axon to other neurons. Although seem-

10

ingly simplistic, these actions account for most of the known activity of the

brain [Wasserman 89].

Artificial Neural Networks

Artificial neural networks consist of a collection of simple computational

units usually referred to as processing elements, or simply, units. These units

operate independently of one another and are completely self-sufficient [Hecht-

Nielsen 1988]. Each one is capable of accepting input signals, performing some

type of data processing, and sending signals to other units. Because these units

operate independently, the network as a whole, is capable of making a large

number of computations in parallel. And, because of their connectivity, signals

from one unit can affect the output of other units, which ultimately affects the

overall behavior of the network. These abilities enable neural networks to

process large amounts of information simultaneously, much like the brain

[Fahlman & Hinton 1987].

Another ability of neural networks is that of "learning", where learning is

defined as the ability to modify the systems response to inputs over time. Each

unit executes "rules" that tell it how to process information. Through the

processing of information, the connections between the units are changed,

adapting the network so as to assimilate new information. It is this adaptation

that gives the network the ability to "learn".

11

Because neural networks can "learn", they possess the capability to rapid-

ly process information in a non- algorithmic manner, unlike computers. As an

example, suppose a neural network and a computer are both being used to

classify objects according to shape. The computer would be programmed with

one or more algorithms telling it how to go about classifying the object based

on its shape. Because the computer has no capacity to "learn" no matter how

many time it "sees", say, a circular shaped object, it processes what it sees by ex-

ecuting the same algorithms time after time.

This is not the case for neural networks. At first, the network goes

through a series of training trials as it attempts to correctly classify the shape of

the objects. During these trials, if the network incorrectly identifies an object,

a learning rule modifies the weights of the network's connections (exactly how

this is accomplished will be explained later). This modification enables the net-

work to respond differently to the same shape the next time it is presented, and

hopefully classify it correctly.

After being presented with each of the shapes several times, the learning

rule has modified the weights in such a manner that the network can correctly

classify each shape. Thus, the network has learned to "recognize" the shapes.

At this point, the network is said to have "encoded" the various shapes in the

connections of the network. Since no further weight modifications are neces-

sary, the network no longer needs to execute the learning rule. Thus, while the

computer must always execute its algorithms to classify the shapes, the neural

network can immediately classify them without the further use of rules.

12

How Neural Networks WorjK

As mentioned above, a neural network consists of a collection of highly

interconnected processing elements. Associated with each processing element

is a number of input signals and a single output signal (figure 2-2). The inputs

represent the outputs of other processing elements or "outside world" inputs to

the unit. Associated with each input signal xi is a weight Wi which is analogous

to the synaptic strength of a real neuron. These weighted inputs are summed

such that the effective total input, or Net = "xiw i.

X1 Wl
X2 W2
X3 W3 n

X4 W4 " NET= NW i OUT =(NET)

Xn Wn

Figure 2-2

Single processing elemex.: with summation of input weighed inputs and activation rule f(net)

This summed input is further processed by the use of an activation rule.

The activation rule is used to determine whether or not the unit will produce

an output signal on the basis of the total input received by the unit. One of the

13

simplest activation rules is a fixed threshold. With this rule, if the summed

input is greater than the threshold value the unit generates an output signal.

Thus, if Net > Threshold Out = 1

else Out = 0

OUT

.5

NET C

Figure 2-3

Sigrmoidal Logistic Function

Another, very popular and useful activation rule is the sigmoid function.

Here

Out = 1/(1 +e "Nt) where Net = x

Figure 2-3 shows a plot of the function. This function is often called the logis-

tic or squashing function. It is popular because of its ability to compress, or

squash, the range of Net so that the resulting Out lies between the values of

zero and one. The function is also desirable because it provides a form of

automatic gain control. For example, with small input signals (i.e. Net near

zero) the slope of the sigmoid is steep. Thus small inputs produce high gain

14

outputs. However, as the magnitude of the summed inputs increases the slope

of the sigmoid decreases, thus the gain also decreases. With this function, it is

therefore possible for the network to accommodate large signals without satura-

tion and small signals without excessive attenuation [Wasserman 891.

The signal output from the unit after being processed by an activation

rule is often called the activation level of the processing element. As the name

implies, it denotes the overall level of excitation or inhibition of the unit. Be-

cause the output of the processing element can be distributed to other process-

ing elements, the value of the activation level becomes the input value to those

other processing elements. In some networks, this activation level is a binary

value (0 or 1), while in others, it is analog (e.g. any real number between 0 and

1) depending on the particular type of activation rule used [Caudill 1988, Lip-

pmann 1987]. The activity level also acts as a "short term memory" for the

processing element, allowing the network to store information (exactly how this

is done will be explained below) [Fahlman & Hinton 1987].

Associated with each input signal is a weight. The weight represents the

strength of the connection between two processing elements, or in other words,

it denotes how much a change in one processing element will affect the other.

The weights can be either positive or negative real numbers. Where negative

reals denote an inhibitory influence, positive reals, denote an excitatory in-

fluence, and a value of zero, denotes no influence at all [Uppmann 1987,

Rumelhart & McClelland 1986].

15

The weights are also the basis for producing the long term storage of in-

formation for the network. Information storage is accomplished by altering the

weights associated with each connection, which in turn, changes the pattern of

interconnections between processing elements [Fahlman & Hinton 1987].

Thus, one unique feature of neural networks is that information is distributed

throughout the network in the weights of the connections.

The processing that alters the weights associated with each unit is deter-

mined by learning rules or algorithms. The learning rules specify how the

weight of a connection is modified based on input values, activation level, and

if present, "teaching" inputs [Rumelhart & McClelland 1986, Jones & Hoskins

1987, Hecht-Nielsen 1988].

One example of a learning rule is the delta rule. Under the delta rule,

the change in weight between two processing elements is a function of the

input from one processing unit and the difference, or delta, of the activation

level achieved by a second unit and the desired activation level provided by a

"teacher" [Caudill 1988, Rumelhart & McClelland 1986]. Thus,

AWab = n(T - Ob)(la) where,

n is a constant of proportionality representing the learning rate

T is the desired "teaching" output

Ob is the current output of the second unit

Ia is the input to the second unit from the first unit

16

The notation Wba means the weight of the connection IQ b kr= a.

Thus, directionality is implied. In some cases there could also be a Wab connec-

tion.

Network Architecture

The real power of these learning and activation rules comes from the in-

terconnection of these processing elements to form networks. By connecting

the outputs of various processing elements to the inputs of others, in a specific

manner, groups, or layers of units are formed. The stacking and interconnect-

ing of the layers in turn, forms the neural network.

The simplest network consists of a single layer of processing elements as

shown in figure 2-4a. Although the figure depicts two physical layers, the

"layer" on the left only serves to distribute the inputs. Since the nodes in the

layer perform no computations, the standard convention is to not consider

them a layer of the network. In spite of this convention, those units that

receive inputs directly from the "outside world" are often referred to as the

input layer or layer 0 of the network. The layer that consists of units whose out-

put is sent to the "outside world" is called the output layer. If a network has

more than one layer, as shown in figure 2-4b, those additional layers are

referred to as "hidden" layers. They are called this because they are "hidden"

from the outside world by the input and output layers. The number of layers,

17

input Outpts

Input Layers Output Layers

Single Layer Network (a)

Inputs Hidden Outputs

2 Layer Network (b)

Recurrent Network (c)

Figure 2.4

Single and Multilayer Networks

18

and how they are connected to one another, determines the particular topology

of the overall network [Fahlman & Hinton 1987, Caudill 1988].

Figure 2-4 depicts three common topologies. In figures 2-4a and b the

only difference is in the number of layers. Note however, that in figure 2-4c

there is a feedback path from the output layer units to the input layer units.

This type of network is referred to as a recurrent network. The response of

such networks is dynamic in that after applying an input, the resulting output is

fed back to the input, modifying the net input signal. This action then causes

the output to be recalculated and the process is repeated over and over. Be-

cause the network is designed to be stable these oscillations dampen out and

the output converges to a constant value.

It is important to note here that the topology of the network alone does

not uniquely identify a particular type of network. For example, in figure 2-4b

the network could be either a backpropagation or a counterpropagation net-

work. While the names are similar, the operation of the two networks is radi-

cally different. The backpropagation network uses a generalized delta rule

learning algorithm, whereas the hidden layer in the counterpropagation net-

work uses a Kohonen learning rule and the output layer a Grossberg learning

rule [Hecht-Neilson 88].

I feel that to uniquely identify a particular network it is necessary to

identify the transfer functions (i.e. learning and activation rules) used in the net-

work as well as the topology. I call the combination of these two features, the

19

C)

0. 4~ J4

4)

0 c
.- m 2~4 cc0

4) Cl,

) 0 0 0
- a- .- I-

04) CA

0 4) O*b0A) 00
~~~~0 4- - (r -- U.

co Cc~mu8 8 E U .6
2

l~bo

4)3 .. 4 b
00 O0

Cc (U2 l- V

m uq

0

cc 4)
0~ C 13'

- 1 r-4 MUl (U (Ucc. 4) o - ) 0 40: .0 (

5 a 5 t: :3 ) 8

V4)4j4

00

cc 4) M~4 - 64
0 cc 0 $.

20



network architecture. Table 2-1 lists several popular neural network architec-

tures.

Network Learning

The purpose of these transfer functions is to enable the network to learn

how to process information. To accomplish this, the network is run through a

series of "training" trials. These trials expose the network to a set of carefully

selected inputs that teach the network some task. So for example, if the net-

work is being trained to classify objects by shape, the training set might consist

of one or more instances of all the shapes it must learn to classify, such as a

circle, a square, a rectangle, and a triangle.

One of three basic types of training methods is used when teaching the

network how to process information: supervised, graded, and unsupervised

[Rumelhart & McClelland 1986, Lippmann 1987, Kohonen 1984]. The par-

ticular method employed is determined by the type of learning rule used by the

network. For example, the first two methods are used with learning rules that

require a "teaching" input. When no teaching input is required, the unsuper-

vised method is used for training.

In supervised training, the network is given the training data as well as

the desired output. After each trial, the learning rule compares the output of

the output layer to the desired output (supplied by the trainer). If there is an

output error, that is, a difference between the desired output and the actual

21



one, then the weights associated with the output layer are modified according

the the learning rule. If the network has more than two layers, any output error

is then "propagated" backwards to the hidden layer that serves as the input to

the output layer (if the network only has two layers the only weights are those

associated with the connections between the input and output layers, thus there

would be no reason to propogate any error). This hidden layer then adapts it's

weights and propogates the error back to the previous layer. This process con-

tinues until the weights between the input layer and the first hidden layer have

been changed. The learning rule associated with each unit in each layer deter-

mines how much the weight will change, and in what direction (i.e. an increase

or decrease in the weight) [Rumelhart & McClelland 1986].

Through successive iterations of the training data, the learning rule

keeps changing the weights until the output error is reduced to a predefined, ac-

ceptable level. When this occurs the weights have converged to a single set of

values (actually the weights oscillate around a single set of values. The mag-

nitude of these oscillations depends on the magnitude of the acceptable output

error). Thus, the network has found one set of weights that, when given any

input, cause the activation of a set of units that will give the "proper" response.

More abstractly, the network has learned how to process and organize informa-

tion such that it answers correctly. An example of a network that uses this

method is the Backpropagation network [Rumelhart & McClelland 1986].

22



A variation of the supervised training method is graded training. Be-

cause these two methods are so similar, researchers often do not distinguish be-

tween them, and refer to both as supervised training [Hecht-Nielsen 1988, Lip-

pmann 19871. In graded training, the network is given input data, but it is not

given any output data. Instead of being told the proper response, the network

is given a grade telling how well it performed [Hecht-Nielsen 1988]. For ex-

ample, suppose a network is being taught to classify objects according to color.

Suppose further, that the network is being taught to group all red objects

together. If the network classifies a blue object as red, the network might be

given a grade of 0, meaning that it is wrong. If the network classifies a red ob-

ject as red, then it might be given a grade of 1, meaning that it is correct.

The network uses this grade as a "feedback input" to the network. In a

manner similar to the one mentioned above for supervised training, the "feed-

back input" generates an "error signal" that is propagated back to the various

layers of the network. The learning rule for the various units in the layers use

this "error signal" to determine how the weights should be adjusted. Successive

iterations of the training inputs are run until the network correctly classifies all

of the inputs.

The network devised by Pazzani and Dyer [1987] is an example of a net-

work that uses this training method. In their network, Pazzani and Dyer use

the generalized delta rule as their learning rule. Like the delta rule described

above, this rule requires a "teaching" input. In their particular study however,

this teaching input does not tell the network what the desired output should be,

23



rather it tells it whether or not the response was correct. Thus, based on the

correctness of the response an error output is generated, telling the various

processing units the magnitude and direction of any weight changes.

In unsupervised training, the network is not given any type of feedback

on its performance. In networks that use this type of training, the learning rule

is a "clustering" algorithm. A clustering algorithm takes the first input and

selects it as an exemplar (i.e. a model or template) for the first cluster. The

next input is then compared to the first cluster exemplar for a match. A

parameter called the vigilance, or threshold is used to determine how close an

input and exemplar must be to be considered a match. If a match is made, the

input is incorporated into the exemplar by adapting the weights of the cluster.

If the input is not close enough for a match, it is used as the exemplar for a

second cluster. This process is repeated over and over for all subsequent inputs

[Lippman 1987]. Thus, each cluster represents a particular class of inputs with

attributes different from the other clusters. Kohonen's Self-organizing Map

[1983] and Carpenter and Grossberg's Adaptive Resonance Theory network

[1982] are examples of networks using this method.

Once the training process is over, the learning rules can be disabled

(depending on the specific application or theory to be tested) and the network

given "real" data to process. The disabling of the rule fixes the weights, prevent-

ing the network from learning any new relationships. This allows the network

to speed up its processing since it no longer has to execute any learning rules

24



and make adjustments to the weights. Such a network has two speeds: one with

learning enabled, and one with learning disabled [Hecht-Neilsen 1988].

Backpropagation Learning Paradigm

With the information covered in the previous sections, one should be

able to understand the various neural network architectures being researched.

Because most new developments are more of an evolutionary process, an under-

standing of several basic architectures enables one to understand a large num-

ber of networks and follow their progress. While it is worthwhile to examine

three or four architectures in detail, it is beyond the scope and purpose of this

paper. However, to better understand what is to follow in later chapters, it is

worthwhile to examine the backpropagation network paradigm in detail.

Background

Before the backpropagation algorithm there was no systematic, theoreti-

cal approach for training multilayer neural networks. Credit for the invention

of the algorithm is shared amoung several researchers. Rumelhart, Hinton and

Williams presented a clear and concise description of the algorithm in their

1986 paper. However, back in 1974 Paul Werbos had described the method in

his Harvard Masters thesis. It was however, the 1986 paper that is in part

responsible for the resurgance in interest in neural networks. It is estimated

that apporximately 80% of the ongoing research involves the backpropagation

algorithm in one form or another [Jackel 89].The backpropagation algorithm is

25



an error minimization technique used to adjust the weights in multilayer net-

works, enabling the network to learn. The algorthim can be applied to both

recurrent and nonrecurrent networks (however the algorithm for recurrent net-

works is slightly different then what will be presented here). The algorithm it-

self is an extension of Widrow-Hoff's delta rule for single layer linear networks.

For this reason, the backpropagation algorithm is often referred to as the

generalized delta rule. It is a generalization of the delta rule because it is ap-

plied to multilayer networks and, as important, it can handle non-linear activa-

tion functions (unlike the delta rule).

Operation of Backpropagation Algorithm

This section is a summarization and review of the work presented in

Rumelhart [1986]. The algorithm works as follows. Given a network with ini-

tially random weights, an input vector is applied to the network and the result-

ing output vector is calculated. The output vector is compared with a desired

output vector, or target vector. The magnitude of the difference between the

actual and the target vector is then used to generate an error j unction. This

function is a metric for how well the network has been trained. The algorithm

then specifies how to calculate the weight changes to perform a gradiant de-

scent of the error function. The error function is then backpropagated through

the network specifying how much change is required in each weight of the en-

tire network.

Relating this back to the previously presented information, backpropaga-

tion denotes a specific architecture. Network topology is multilayer with it

26



being nonrecurrent in most applications. The activation rule is nonlinear and,

as will be discussed, must be nondecreasing and differentiable. Supervised train-

ing is required since the algorithm requires a target output.

Expressing the explanation above mathmatically, we have an error func-

tion E which measures the closeness of the actual ouputs of the netw ,rk opi

and the target outputs tpl fo: a series of patterns p on which the network is

trained. Thus

EP= (tj oj)2 [

where Opj is the jth component of the output pattern for the pth pattern and tpj

is the corresponding output component. The overall error of the network over

all of the training patterns can then be expressed as

E = " Ep [21

The desired effect is to make weight changes that will minimize this error func-

tion. To do this, one needs to select weight changes prGportional to the nega-

tive of the derivative of the error function. Thus, we want

aEp [31
ApWji 0' - aji

Before proceeding any further we need to define the net output and the activa-

tion function. The net output for pattern p can be defined as

27



netpj WjiOpi [4]

where wji is the weight to j from i and op, is the output of node i due to pattern

p.

The activation function is

Opj = f(netp,) [51

where f is a differentiable and non-decreasing activation function

(e.g. the logistic function 1/(1 + e'nt)).

Now, applying the chain rule for differentiation to the error function [3] with

respect to the summmed outputs

aEp aEp anetpj [61
awji 8netp, awji
anetpj a [7] i

from [3] -= a 2" Wjk Opk Opi

OW ji o'Wi k

defining -l " ep [8]anetp1

aEp

Equation 6 becomes ap P bpj Opi 19]

In turn, equation 3 becomes APwji = '1j opi [101

where -n is a constant of proportionality.

28



This then clearly defines how the weight changes should be made to follow a

gradiant descent in E.

One problem, however still remains. What should % be for each node

in the network? While it is easy to determine for the output layer nodes, how

does one determine the error for the hidden layer nodes? In other words, it is

easy to assign a certain amount of "blame" to each node in the output layer

since they directly contributed to the resulting error Ep. However, how does

one determine the amount of "blame" that should be affixed to, say node x of

hidden layer y of the network? This is exactly what the generalized delta rule is

able to answer. Rumelhart et. al. used a single recursive computation of the &'s

that enabled them to propagate the error backwards and assign a proportional

amount of 'blame" to each node of the network.

Going back to equation 8 then

6 aE%

6PJ anetpi

applying the chain rule again with the change in error as a function of output of

a node and the change in output as a function of the summed inputs results in

aopa 0pj [111
S=- a0p anetpj

from equation 5
aopj i.e. the derivative of the
anet7j - fj(netpj) activation function [121

29



Now for a , have to consider, 1) nodes in the output layer and 2) those

nodes in the hidden layer. From equation 1

anet= - (tpj - Opj) [131

anep1

then for the output layer nodes

8p = (t p- opj) f'(netpj) [14]

Now for the case where the nodes are in the hidden layer. Here again

we can use the chain rule to write the first part of equation 11 as

aEp anetpk aEP a aEp w
anet~kao~~ 8I)~p~ 7- anetk -

k tka anetpk aopj , e~ Wkipi k tpk kj

[15]

- 6pk Wkj
k

Thus for hidden layer nodes

=pj =-f'j(netpj) : 8pk Wkj [161

This means that the B's for all the output nodes are computed then they

are subsequently used to calculate the 8's for the hidden layer nodes.

Table 2-2 summarizes these results. Equation 1 specifies that the weight

change for a node j should be proportional to the product of the error signal spj,

for that node and the output of a node i which sends its output to node j. If

30



ApWJ1 = 71op

Equation 1

p= (tj - opj)f'(netpj) (for output layer)

Equation 2

8pj -= f'(netpj) 8pk Wkj (for hidden layers)

Equation 3

Table 2-2

Backpropagation Algorithm

node j happens to be in the output layer then the error signal (equation 2) is

the product of the difference between the actual and target output multiplied

by the derivative of the activation function. If node j is in a hidden layer, then

the error signal (equation 3) is the product of the derivative of the activation

function of node j multiplied by the sum of all the error functions of those

nodes connected to node j times their weights.

31



Thus, the application of the backpropagation algorithm gives a simple

method for adjusting weights no matter how many layers are in the network or

how many nodes in a layer. The steps taken to execute the backpropagation al-

gorithm are summerized as follows:

1. Apply a training pattern to the network.

2. Calculate the output value Op, for each output node.

3. Calculate the 8's associated with each output layer node (eq. 14).

4. Backpropagate the 8's to the nodes in the previous layer (eq 16).

5. Keep backpropagating the 8's for any subsequent layers.

6. Calculate the weight changes for the training pattern (eq 10).

7. Repeat steps 1 - 6 for the next training pattern.

8. Repeat steps 1 - 7 until weights converge.

Summary

From the information in this chapter the reader should now have a basic

understanding of neural networks; what they are, the relationship between the

topology, the activation rules, and the learning rules, and how the learning rules

are used to adjust weights, enabling the network to learn.

32



Chapter iM

Multiprocessor Systems

Introduction

As in many areas of research, computers are an essential tool. For

various reasons however, the best tool is not always the one used. This is true

for neural network research. Most research in this area utilizes conventional

computer systems to implement these highly distributed systems. Although suc-

cessful, the overall result is slow simulations and size limitations. These two

factors are especially detrimental when researching new network architectures

because of the dynamic environment associated with the research phase (e.g.

repeated simulations with minor changes to determine optimum topology).

There are better tools available, namely multiprocessor computer sys-

tems. Research in the computer science community has shown these concur-

rent processing systems to be an effective means of achieving serial super-com-

puter performance [Hillis 84]. In some respects, they are even better than

super-computers because of their affordability and growing popularity.

33



With this in mind, the purpose of this chapter is to provide an introduc-

tion to the fundamental concepts of multiprocessor computer systems. The

first section gives a brief overview of multiprocessors and the characteristic fea-

tures the possess. The next three sections discuss processor granularity, memory

types, and the different types of parallel architectures and the communications

networks required to support these systems. The last section of the chapter

details the architecture of the Masscomp 5700 computer system.

Overview of Multiprocessor Systems

All modem computer systems exhibit some parallelism, whether it be at

the arithmetic, instruction, program, or job level. Thus, whether or not a sys-

tem is defined as a parallel system is somewhat subjective. We will use the

term multiprocessors to refer to those parallel systems with more than one

CPU, to distinguish them from those parallel systems with a single CPU that

are capable of executing several instructions or computing several seperate data

items simultaneously.

To better understand where multiprocessors fit in the plethora of com-

puter systems, we can look at Flynn's taxonomy [Flynn 72]. His classification of

parallel architectures is based on the relationship between the instruction and

data streams that are processed during program execution. A stream is defined

as a sequence of items (instruction or data) as executed or operated on by a

34



processor [Hockney 88]. Depending on whether the instruction or data streams

are single or multiple, four broad classifications can be defined.

The first classification is Single Instruction stream Single Data stream

(SISD). Computers in this category have one stream of instructions initiate a

single operation which leads to a single data stream of logically related argu-

ments and results. Most single CPU systems containing a single arithmetic unit

capable of only scalar arithmetic fall into this class. Examples of such systems

include most personal computers.

The second classification is Single Instruction stream Multiple Data

stream (SIMD). Computers in this category still have a single stream of instruc-

tions, but they are vector instructions that initiate the execution of data on mul-

tiple processing units. Because each unit contains different data, there are mul-

tiple data streams. Computers in this class include the ILLIAC IV, and the

Connection Machine. This category also includes those systems that have as-

sociative or content addressable memory processors. In these systems a num-

ber of stored data items can be processed concurrently by a single instruction.

An example is the Goodyear STARAN system.

The third classification is Multiple Instruction stream Single Data

stream (MISD). There is some dispute over the types of systems that fit into

this category. This particular classification implies that multiple instructions

are simultaneously operating on a single data stream. If one takes the view-

point that in pipleine processors, each data item is processed by different in-

35



structions in different segments of a pipeline, then some pipeline computers fit

this category [Hayes 78]. Others, such as Hockney [88] feel ther are no systems

that fit this category and that pipeline systems such as the CRAY-1 are better

classified as SIMD systems.

The fourth and final classification is Multiple Instruction stream Multi-

ple Data stream (MIMD). In this class, the multiple instruction stream implies

that there are multiple instruction processing units and thus, multiple data

streams. Most types of multiprocessors fall into this category. While there are

numerous examples, some worth noting are the 4 CPU CRAY- XMP, the BBN

Butterfly, INMOS Transputer, Sequent Balance, Alliant FX/8, and

MASSCOMP systems.

While Flynn's taxonomy provides a gross characterization, multiproces-

sor systems can be further characterized by several particular sets of features.

The first set of features are the number and types of processors utilized by the

system. The second set, the size and type of memory used. And the third set,

the communication channels between the various processors. The paragraphs

that follow briefly detail these features.

Processor Granularity

Another basis for the classification of multiprocessor systems in the num-

ber of processing units the system possesses and their computational power.

This basis is called processor granularity of which there are two broad

36
S



categories; fine grain and coarse grain. Fine grain systems are defined as those

machines that have a large number of relatively simple processors. Similarly,

coarse grain systems are defined as those machines having a small number of

powerful processors.

There is no definitive dividing line between coarse and fine grain sys-

tems. That is to say, that if a system has over 50 processors it is automatically

called a fine grain system, or if a system utilizes 100 80286 processors it is

called a coarse grain system. For some systems the classification is very clear,

for others the classification is more subjective.

Fine Grain

Thinking Machine's Connection Machine is probably the best known

fine grain computer system. It has over 65k single-bit processing units with 4K

bits of memory per unit. Characteristic of fine grain systems is the small

amount of memory associated with each unit. As such, there is not enough

processor memory to enable each unit to execute any significant type of

program. For this reason, most fine grain systems operated as SIMD machines.

Most fine grain systems also have custom designed topologies to make

them effecient at solving specific types of problems such as matrix calculations.

The Connection Machine however, is somewhat of an exception for it has a

flexible topology. It uses a complex switching network which provides program-

mable connections between any two processors. These connections can be

.- 37



changed dynamically during program execution. This make this particular sys-

tem more of a general purpose fine grain system.

Because of the large number of processors required in fine grain sys-

tems, some systems use custom designed processors. These processors are

designed specifically for parallel processing. Two well known examples utiliz-

ing custom processors are, the INMOS Transputer and the NCUBE Hypercube.

Coarse Grain

At the other end of the spectrum are the coarse grain systems, which

consist of a small number of more powerful processors. Coarse grain systems

typically employ conventional sequential processors, such as those found in per-

sonal computers and work stations. The Motorola 68000 series and Intels

80x86 series are two such examples. Examples of coarse grain systems include

the Masscomp 5700, Alliant FX/8 and the Cray-XMP.

The relatively small number of processors associated with coarse grain

systems enable most such machines to have enough processor associated

memory to store individual programs. As such, these sytems are capable of

MIMD operations. This provides a great deal of flexability over SIMD

machines and allows the processors to operated asynchonously. There are

times however, that the processors need to interact if these systems are working

on a common problem. Thus, with such systems, synchronization or "ren-

devous" techniques play an important role in the systems overall performance

38



(the importance of synchronization and other key issues will be discussed in a

later chapter).

Memory Types

A second factor used to characterize multiprocessor systems is the type

of memory it utlizes. Memory can be classified as either shared or distributed.

Shared memory, also called global, is that memory that can be directly accessed

by any of the system's processors. Distributed, or local memory, is that

memory that can only be accessed by a single processor. It should be noted

that cache memory is typically not consided as part of a multiprocessor's local

memory.

Another set of terminology used to refer to shared and distributed

memory is that of coupling. If a system is referred to as being tightly coupled,

it means that the sytems utilizes shared memory. If the sytem is referred to as

loosely coupled, it means the system utilizes distributed memory.

The granularity of a system somewhat determines the type of memory a

multiprocessor system possesses. Fine grain systems are typically characterized

as having local memory. The reason being, is that contention for shared

memory resouces becomes unacceptable when the number of processors is

greater than thirty or so (numbers vary depending on the type of communica-

tions used). Systems with local memories do not have to worry about memory

contention since each processor has its own. There are tradeoffs however, in

.- 39



that communications between processors with local memory is more compli-

cated. Communication channels must be implemented so data can be passed

back and forth. Several examples of system with local memory include the Con-

nection Machine, Inmos Transputer, and NCUBE's Hypercube.

Characteristic of coarse grain systems is shared memory. As alluded to

above, one of the advantages of shared memory is that of interprocessor com-

munications. With a global memory, results from each processor and messages

can be stored in predetermined memory locations so that other processors can

access the information. Thus, dedicated interprocessor communication chan-

nels are not required. One other nice feature of shared memory is that multi-

ple copies of common data are not needed for each processor to execute a com-

putation. Examples of shared memory machines include the Sequent Balance,

Masscomp 5700 series, and the Alliant FX/8 systems.

The main drawback of shared memory however, is that the processors

must contend with one another for the memory resources. If the number of

processors is small, the contention can be handled very well and there is little

or no degradation in system performance. However, as the number of proces-

sors increases, contention does start to degrade system performance until it

reaches a point where shared memory is no longer viable. This point varies

amoung different systems depending on the type of architecture and com-

munication networks it employes. In fact, sorn," of the various coarse grain ar-

40



chitectures and communications networks were developed to address this very

problem.

There are some systems that, depending on ones frame of reference, fit

into either the shared or distributed memory catagories. Two notable examples

are IBM's RP3 and the BBN Butterfly. Both systems are classified as fine grain

systems b: cause of the large number of proccessors they utilize (513 for the

RP3 and 256 for the Butterfly). They possess banks of memory that, while

physically located with each processor, can be accessed by any processor via

sophisticated switching networks. Thus, if one considers all the memory banks

as a whole, even though they are physically seperated, these systems can be cias-

sified as having shared memory. If however, each bank of memory is con-

sidered a seperate entity because of its location, then the systems can be clas-

sified as having distributed memories.

Multiprocessor Architectures and Communication Networks

Figure 3-1 depicts the two types of processor architectures described in

the last two sections. Figure 3-1a illustrates a generic coarse grain architecture

with its shared memory and communications network, while figure 3-1b il-

lustrates a generic fine grain system with its distributed memory. How these

processors communicatewith one another and their memory is dictated by the

communications, or interconnection, network.

41



With multiprocessor systems, the communications network can take on

a number of topologies as shown in figure 3-2a. Each node in the figure repre-

sents the combination of the processor and memory, often referred to as the

computing element or processing unit. The lines between the nodes denote

how the communications network is set up, visually depicting the links between

the processing elements.

Because the communication network is crucial to the effecient operation

of the system as a whole, it is worthwhile to describe some of the various types.

Representative of the many interconnection schemes are:

o Shared Bus

o Crossbar connected
o Multistage switching

o Hypercubes

Shared Bus

The most common communication network used in coarse grain systems

is the shared bus. Figure 3-3 depicts the shared, or common bus system. As-

sociated with each processor is a cache and possiblly some small amount of

local memory. The cache and local memory enable the processors to reduce

their use of the bus, thus limiting potential conflicts with other processors. The

bus provides temporary links between the processors via the shared memory.

Examples of systems using shared buses are Masscomp, the Sequent Balance

and the Alliant FX/8.

42



(a)

Coarse Grain System

rMemory 1

* ~ FMemor

I 0

(b)

Fine Grain System

Figure 3-1

Coarse and Fine Grain Multiprocessor Architectures

Ile, 43



(a) Mesh

(b) Heiarchical

(c) Cube

Figure 3-2
Common communications network topologies

44



The shared bus is very similar to the buses used in most sequential com-

puter systems. It has interrupt lines, master slave relationship, and bus alloca-

tion procedures. And, like most buses, because it is a shared resource, it is the

main bottleneck in effecient performance.

Crucial to the effectiveness of the bus oriented systems are the cache

and local memory (if any). They are used to shorten the effective memory

cycle and reduce the use of the bus so that one processor does not slow down

another through the bus interface. With effective use of the cache and local

memory, bus access can be significantly reduced thereby allowing more proces-

sors to share the bus at a given level of contention. Even with the use of high

bandwidth buses and fast memory however, the number of processors that can

be supported is usually between 20 to 30 [Stone 88].

Processor 1

Shared
Prco 2 Memory

Processor 3 1

Figure 3-3
Shared Bus System

45



Memory I Memory 2 Memory n
Processor 1

Processor 2

I I I
I I I

Processor n II I- -

Figure 34
Crossbar System

Crossbar

The second type of communication network is the crossbar switch.

Stone [88] refers to the switch as the "anthesis of the bus" because it offers the

least contention, but has the highest compl, -ty. Figure 3-4 illustrates the

crossbar switch. In the figure are N processors connected via the crossbar to N

memories. Usually the number of memories is equal to or a small multiple of

the number of processors.

In this type of system, a number of processors can have simultaneous ac-

cess to the memory modules as long as there is no conflict. For example,

processor 1 can be connected to memory 2 while processors 2 and 3 are con-

nected to memories 1 and 4 respectively. Thus, the crossbar switch has the

46
4-



capability of allowing up to N simultaneous accesses provided that no two

processors access the same memory. In cases where contention does occur, a

contention algorithm decides which processor will gain access to the memory

first, putting the other one on a queue.

The complexity of the crossbar switch has limited its use in commercial

applications. One example of this communication system was Carnegie-Mel-

Ion's C.mmp system which was comprised of 16 DEC PDP-11 minicomputers

connected to 16 memory modules by a 16 x 16 crossbar switching system.

Hypercubes

The third type of communication network utilizes hypercubes. Because

hypercubes allow for a large number of processors, this type of toppology is

popular in fine grain systems. Figure 3-5 illustrates the hypercube topology. As-

sociated with each figure is the dimensionality of the hypercube. A single node

is a zeroth order hypercube, a line a first order cube, a square a second order

cube and a cube a third order hypercube. To make an nth order hypercube, all

one needs to do is take two copies of the n-1 order hypercube and connect cor-

responding nodes together. For example, to build a 4th order hypercube, take

two third order cubes and connect the corresponding corners of the cubes

together.

The name, hypercube, is derived from the way the nodes are each inter-

conected to a small number of immediate neighboring nodes. One big attrac-

- 47



tion of this type of topology is that the number of connections grows relatively

slowly with the size of the hypercube. Specifically, for a nth order hypercube,

there are d = 2n nodes with n = log2d connections to each node. A second

feature is that the nth order hypercube has all the subsets of connections of the

lower order hypercubes.

point (0d) line (1d) square (2d)

cube (3d) hypercube (4d)

110

0100 
101

000 001

Figure 3-5

Hypercube Architectures

Although not fully connected, the hypercube topology provides a means

of communications with remote processing units. If a message needs to be sent

to a remote node, a simple algorithm is used for routing the message through

intermediate nodes until it reaches the intended node. In an N dimensional hy-

percube, the log2N nodes connected to a particular node only differ from their

48



neighbors by exactly one bit position in a binary tag. For example, in figure 3-5c

the 000 node is neighbors with the 010, 001, and 100 nodes, all of which only

differ in one bit position. At each stage in the routing scheme, the message is

sent to the neighbor whose binary tag agrees with the tag of the ultimate des-

tination in the next bit position (e.g. when going from left to right) that differ

between the sender and the final destination. For example, in sending a mes-

sage from 000 to 111 it would first go to 100, since the left bits differ, then to

110, since the middle bits differ, and then finally to 111.

From above, we can see that the path length for sending a message be-

tween any two nodes is the number of bit positions in which the binary tags dif-

fer. Thus, the maximum path length is simply the dimensionality of the hyper-

cube. Also, note that other paths do exsist and that these redundant paths can

be exploited to increase the fault tolerance and enhance the communication

bandwith of the system [Heath 85].

Examples of multiprocessor systems utilizing hypercube topologies in-

clude INTEL iPSC, Cosmic Cube, NCUBE Hypercube, JPL MARKIII, and the

Connection Machine.

Multistage Switching

The last type of communication networks to be discussed are the multi-

stage switching networks. Multistage switching networks use two or more

levels of intermediate switching nodes to provide links between the multiple

49



processors and memories. The network uses a small number of these switching

nodes and a clever arrangement of internode links to guaranteee at least one'

path between each processor and memory. These types of switching networks

go by many different names depending on their specific function. Some ex-

amples are the Benes, Omega, and Banyan networks. Figure 3-6 shows one

generic class of multistage switches called shuffle exchange networks.

IP

Figure 3-6
I Shuffle exchange network with eight processor and

eight memories. (From Stone)

In the figure, eight processors are connected to eight memory module.;

via three levels of switching nodes. This type of network offers an important ad-

i 50

I



ditional feature, the combining switch. This switch is used to reduce contention

by performing operations in parallel within the switching network that would

otherwise have to be serialized at the memory [Stone 88].

The multistage switching network has certain advantages over the bus

and crossbar switching networks. On the bus and crossbar, exclusive access to

shared memory is the limiting factor in performance . Once access to a

memory is saturated (e.g. 1 for the bus and n for a n x n crossbar) no additional

performance can be realized by adding any more processors. However, with the

multistage switch, exclusive access to memories can be done in parallel by

making use of the combining switches and the memory. Lawrie [75] has shown

that if N processors place simultaneous synchronized request so that processor i

requests data from memory i + c, for any constant c, the requests can be

honored simultaneously without any conflict. Albo, no contention occurs if

processor i requests data from memory pi + c, where p is an odd number,

provided that the number of processors is a power of 2 [Stone 88].

One drawback of multistage switching networks is a problem addressed

by Pfister and Norton [85] concerning "hotspots". Hotspots occur when a

specific memory module is referenced to the point of contention. The module

cannot accept any new data, so the switches connected to the module become

backed up since they cannot output data to memory (i.e. a queue .7 memory ac-

cesses is set up). This, in turn, causes a further back up in the preceding switch-

ing layer. This can result in the interference of communications to other nodes

51



in the system that are not related to the hot spot. For example, consider the

situation depicted in figure 3-7. Memory 2 is saturated causing the switching

modules to be blocked as indicated. Suppose that the demands of processors 2

and 4 caused the contention in memory 2. One result of this is that the path

for processor 3 to memory 4 is now blocked, although neither processor 3 or

memory 4 were involoved in the saturation.

Figure 3-7
Shuffle exchange network with hot spot in memory

two. Shading shows blocked switching modules.
(From Stone)

In spite of this drawback, multistage switching is becoming and attractive

alternative to bus oriented and crossbar switching systems. Examples of multi-

52



processor systems using this switching technique include the BBN Butterfly,

IBM RP3, and the Illinois Cedar system.

Masscomp 5700 Computer System

As can be seen from the previous sections, multiprocessor architecture

is determined by the number and types of processors and memories, and the

topology created by the communications network. In this section we will ex-

amine the architecture of the Masscomp 5700 multiprocessor system.

The Masscomp 5700 computer is a coarse grain, tightly coupled multi-

processor system. The system is built around the 32-bit Motorola 68020

microprocessor architecture and will support up to eight CPU modules. The

communications network of this system is based on a triple bus architecture.

The overall system architecture is comprised of the following elements:

o Up to 8 Central Multiprocessing Units (CMPU)

o One or more MULTIBUS Adapters (MBA)

o One or more Central Memory Modules (CMM)

C An Auxilary Function Module (AFM)

o Three Buses; Synchronos Memory Interconnect (SMI), Masscomp enhanced

MULTIBUS and STD buses

o MULTIBUS controller modules (e.g disk, graphics, ETHERNET)

o One or more Data Acquistion/Controller Processors (DACP)

o STD + data acquisition devices (e.g. d/a, a/d converters)

53



Figure 3-8 illustrates a typical multiprocessor configuration. The follow-

ing paragraphs describe the major system components and how they interact.

Buses

One of the key elements to the Masscomp system is its triple bus ar-

chitecture. Each bus is a collection of interface signals that allows the systems's

hardware elements to interact with one another. This interaction includes 1/0

data transfers, direct memory access (DMA) transfers, and the generation of in-

terrupts.

These buses use the master-slave concept of control. That is, a master

device initiates bus activity by taking control of the bus and sending the address

of the device it wishes to communicate to on the bus. After detecting its ad-

dress the other device becomes the slave and executes the command sent by

the master. Different buses implement the master-slave relationship using

various protocols that define how the master and slave are to interact.

The three buses used on the Masscomp system include two industry

standard buses and Masscomps own bus. The two commerical buses, the MUL-

TIBUS and STD buses, have some Masscomp enhancements. These particular

buses were chosen to assure compatib.ilty between Masscomp's system and

peripherial equipment from other manufacturers. The third bus is Masscomp's

own Synchronous Memory Interconnect, or SMI bus.

,- 54



E

<

000

ES

FT --

*5



The STD + bus is used exclusively for Masscomp data acquisition

devices such as A/D, D/A, and parallel 1/0 modules. Masscomp calls this the

STD + bus because they combined two 9-slot STD buses side-by-side. While

each STD bus share address lines, they have seperate data lines. It utilizes the

typical master-slave relationship described above. In this particular system

however, the DACP module always acts as the master and the device modules

as the slaves.

The second bus in the system is the MULTIBUS. This bus conforms to

the industry standard IEEE-796 MULTIBUS. It has several Masscomp enhan-

cements that allow up to a 6M Bytes/sec transfer rate versus the standard 2.5 -

3.5M Bytes/sec. The bus is used by intelligent I/O controllers (e.g. the MBA

and DACP) handling graphics, mass storage, and data acquisition.

Masscomp added several extra lines to the standard MULTIBUS to en-

hance its features. The biggest enhancement is the use of a block mode control

signal that allows the time multiplexing of 32 bits of data onto 16 data lines.

This extension provides for twice the throughput for Masscomp devices

designed for the higher throughput, and, at the same time, maintains com-

patibility with those standard devices using the IEEE specifications.

The last bus is the Synchronous Memenry Interconnect. This bus is used

to link all the CPU modules with the main memory modules over a dedicated,

high speed path. The bus is designed to support multiprocessing, allowing

uniform access by all processors to physical memory.

56



One of the features that enhances the SMI for effecient multiprocessor

use is Masscomps communication algorithm called "split transaction" protocol.

This protocol is used to arbitrate between the devices on the bus. Any device

on the SMI that requests a transfer of data (e.g. CPU, graphics) sends out a

specific command over the bus then releases the bus. At some later time, the

device responding to the command (e.g. main memory) gains control of the

bus, responding to the request. Thus, at any point in time all devices are

eligabel to control the SMI.

The purpose of this "split transaction" is to make more effecient use of

the bus. For example, in the more common interlocked protocols, once a

device has control of the bus it does not relinquish it until the transaction is

complete. This means that bus cycles are wasted while the master device is wait-

ing for the slave to fetch the requested data. With the split transaction, a high

bus bandwidth is achieved because that idle bus time is freed up, allowing other

devices that are waiting for the bus to make their requests.

These three buses are interconnected through two dedicated Masscomp

devices; the MULTIBUS adapter (MBA) and the Data Acquisition and Con-

troller Processor (DACP). The MBA handles all communications between the

SMI and the MULTIBUS while the DACP handles all communications be-

tween the STD + bus and the MULTIBUS. The devices are intelligent I/O con-

trollers, and as such have the necessary circuitry to accomidate differences in

control lines, data sizes, and address translations between their respective buses.

57



CMPU Modules

The Central Multi-processing Unit (CMPU) module contains the central

processing resources for the system. It contains the 68020 microprocessor,

memory management hardware, an 8K byte cache, a Motorolla MC68881 float-

ing point coprocessor and floating point accelarator, and the optional MULTI-

BUS adapter. Only the memory management, cache, and MBA will be dis-

cussed because of their direct relevance to parallel processing.

Memory Management Hardware

Each CMPU module contains memory management hardware to control

the 4G Byte virtual memory address space (32 bit processor thus 232 addresses)

using demand paging. In the demand paging used by Masscomp, 4K Byte

chunks of contigous address space, referred to as pages, are copied into main

memory only when explicitly referenced by a running process. To accomplish

this, two primary hardware components are used, a page table engine and a

translation buffer.

When a program is read into physical memory, one page at a time, each

page's virtual address is first mapped to the physical address that is actually

used. The page table engine provides this address mapping or translation. The

table generates entries to page tables which are stored in main memory. The

page tables keep track of the physical location of each virtual page, with a uni-

que set of page tables being kept for each process. A high speed RAM in the

58



CMPU module, called the translation buffer, contains the address translations

that have most recently been mapped by the page table engine. Thus, a copy of

the most frequently used translations is already known to the CPU and need

not be fetched from main memory.

The translation buffer is used by the CPU to check if a virtual address

has already been translated. If the address is present, a hit occurs. This means

that the virtual address can immediatly be converted to the proper physical ad-

dress. If the address is not present, a miss occurs. The page tables in main

memory are then checked to see if the translation is present. If so, the transla-

tion buffer is updated. If not, the Operating System fetches that page in secon-

dary memory, which contains the requested address and the page table engine

translates the address, updating the main memory page table and the CPU

translation buffer.

MULTIBUS Adapter

As shown in figure 3-8 the CMPU has two communications paths, one

to the SMI and one to the MULTIBUS. The reason behind this is that the

MBA is an optirnal feature. If the CMPU needs only to communicate with

main memory, a MBA is not required. In the figure, CMPUs 2 - 7 are ex-

amples. However, since mass storage devices are required as well as other 1/0

devices, at least one MBA is required for the system. It should also be noted

that a CMPU module can access another module's MBA. Thus, a CMPU

59



without an MBA still has access to all the system's devices even though it has

no MBA of its own.

Cache

The CMPU modules utilize an 8K byte, two-way associative cache to

minimize the number of wait states incurred by the microprocessor when ac-

cessing main memory. The cache is set up with 8 bytes/block and 2 blocks/set.

Because the cache has a load through capability and its block size is 8 bytes,

after the first 4 bytes (i.e. 32 bits) are available, the CPU can process the data

while the cache is receiving the next 4 bytes.

The cache also utilizes a read-allocate, write through algorithm. If data

is available in the cache for a read, then it is simple read into the processor. If

a read generates a cache miss, then the processor accesses main memory for

the data and the 8 byte block that contains the data is loaded into the cache

(read-allocate). In write operations, if the data is in the cache, then both the

cache and main memory are updated (write through). If the data is not in the

cache during a wrl' operation, then only the main memory is updated.

Since multiple processors can use the SMI and share the same memory

resources, data modified by one processor must be invalidated in the caches of

other processors. Each processor therefore, has an invalidation stack that con-

tains the addresses currently held in the cache. These addresses are checked

against the addresses currently held in the cache. If a match occurs, that data is

60



invalidated and the next request for that data causes a cache miss, which in turn

causes the processor to retrieve the updated data from main memory.

Because the cache is two-way associative, a replacement algorithm is

necessary. The Masscomp caches use the least recently used (LRU) replace-

ment algorithm. In this particular architecture, this means that if both blocks of

the cache, for a given index, are full, the block that has gone the longest time

without being referenced is marked for replacement.

Auxiliary Function Module

In this multiprocessor system, one CMPU module is used as the boot

processor for the system. Associated with this one processor module is the

auxiliary function module (AFM). This module provides a number of system

features that would be redundant if on every CMPU module in the system.

While the AFM is not an SMI or MULTIBUS device, it provide general ser-

vices for the buses and CPU.

The AFM's functions can be broken up into five areas:

Bus Arbitration - Arbitration for both the SMI and MULTIBUS, granting

the use of each bus to the device with the highest priority.

Bus Clocks - Generates the clocks for the SMI and MULTIBUS buses.

Termination Network - Provides a network of resistors to attenuate bus

signals so that reflected signals are not interpreted as valid responses.

61



Intialization circuit - Provides circuits to detect system power-up, resets,

and power outage.

Serial Interface - Generates the TOD clock for the boot CMPU and

provides the serial communications between the boot CPU and NVRAM

Central Memory Modules

The system is capable of holding up to 128M Bytes of physical memory

in Central Memory Modules (CMM) that each contain up to 4M Bytes. Each

module is organized with a 32-bit wide data path and 7 additional check bits as-

signed to each 32 bits of data. The check bits enable each module to correct

single bit errors and detect all double bit errors.

The modules are interleaved in sets of two. Because the system is or-

ganized in quadwords (64 bits), each consecutive longword (32 bit) address is

physically assigned an alternate module. This particular type of interleaving

scheme was set up for two reasons. The first reason is that it allows the CMMs

to match the SMI bandwidth and the 8 byte/block requirement of the cache. A

single memory module is capable of only utilizing half the bandwidth of the

SMI becuse of data fetch delyas and cycle time. By interleaving two modules,

one module can have 4 bytes (i.e. 32 bits) of data being transferred on the bus

while the other is fetching another 4 bytes. Thus, maximum use of the SMI bus

62



is achieved, and if its a cache request, it can fill the block with the minimum

amount of delay.

The second reason for two module interleaving is module failure. If the

modules were totally interleaved, (i.e. each module contains the next consecu-

tive physical address) the failure of any one module would affect the entire

128M bytes physical address space. By having only pairs of modules inter-

leaved, a failure of one module would only affect a localized portion of

memory, 8M bytes in size. Thus, using this type of interleaving, the affected ad-

dress space in a failure is significantly reduced.

SUMMARY

From the preceding sections, one can now see that multiprocessor sys-

tems involve more than just adding more processors to a system. The number

of processors and how they are interconnected, the location of memory

modules, which processors are allowed to access which memory modules, and

the type of communications network utilized, are all interrelated and important

considerations in the design of an efficient multiprocessor system.

63



Chapter IV

Implementing Neural Networks on Multiprocessors

Introduction

According to Bower [88], the efficient implementation of programs on

multiprocessors is important in neural network research for two main reasons.

First, depending on the number of processors and the systems' overall efficien-

cy, the time spent in network development and evaluation can be significantly

reduced. Second, larger, more complex networks can be run in the same

amount of time it takes a single processor system to run simpler networks.

However, the implementation of neural networks on multiprocessor sys-

tems is not all that easy. Because multiprocessor systems have unique network

architectures, they also possess special programming requirements. The basic

premise behind parallel processing is that the various processors in the system

work in parallel, each on its own assigned task, to solve some overall problem.

As such, programs written for multiprocessors must be able to be partitioned;

distributing the workload among all the processors. Once distributed, there are

other requirements to consider such as, how much communications between

64



processors is needed, and how much synchronization is necessary. Considerable

effort has been expended over the past several years in understanding how to

efficiently implement these requirements [Bower 88, Kallstrom 88, Kruatrachue

88, Wolfe 88].

To accommodate these requirements, most systems use library exten-

sions to conventional operating systems and languages, enabling the program-

mer to specify processors and the actions to be taken. Examples of systems

using this method, are the Sequent Balance, Masscomp, Alliant FX-8, Connec-

tion Machine and Intel iPSC. Other systems use new program languages

designed specifically for multiprocessors. Probably the best known example is

the OCCAM language used with Intel transputers.

A third method for handling parallel processing requirements is smart

compilers. These compilers search for parallelism in sequential programs, free-

ing +he programmer from the job of parallelizing the code. Unfortunately,

these compilers are limited in the amount of parallelization they can detect,

and they must be tailored to the specific type of microprocessor used, as well as

the overall system's architecture.

Thus, for the most part, it is up to the person writing programs on multi-

processor systems to specify the parallelism. Depending on the particular sys-

tem, this may mean adding calls to execute a routine on one or more proces-

sors, or writing a simple piece of code that specifies communication and data

paths, and how to partition the program.

65



Regardless of the method used, one must address the following four

key concepts for the effecient implementation of a program on a multiproces-

sor system:

o Decomposition

o Load Balancing

o Communication Overhead

o Synchronization

The next four sections detail these key concepts.

Decomposition

Decomposition can be defined as a method of breaking up and distribut-

ing a single problem among all available processors. The effecient decomposi-

tion of a problem is dependant on both the problem to be solved (neural nets

in our case) and, the system architecture. Thus, the first logical step in decom-

position is to choose a "problem domain" (as Bower [88] refers to it) to fit the

architecture of the system. For example, in a system where the number of

processors equals, or exceeds the number of nodes in a neural network, the

domain could be the individual nodes. In situations where there are more

nodes than processors, the decomposition may take place at the layers. That is,

all nodes in a layer would be processed by the same processor. Generalizing

these two examples, one might characterize the problem domain in terms of

the repetitive, physical attributes of the problem, either at a very fine level (one

66



node/processor), or at a more coarse level (several nodes/processor). In most

cases, this type of decomposition preserves spatial relationships. That is to say,

nodes close to one another in the network are "mapped" to processors close to

one another on the computer system.

The decomposition need not be based on physical attributes, it could

very well be based on the network's functions. For example, in a backpropaga-

tion network, one or more processors could be assigned the task of summing

the inputs to the nodes, othe- processors, to calculate the activation levels, and

still other processors, to perform the error propagation calculations. Another

example would be the counterpropagation networks. Since one layer uses a

Kohonen algorithm and the other a Grossberg, the network could be decom-

posed based on these two different functions. In this type of decomposition

there is no space preserving mapping from the network nodes to the processors.

One last type of decomposition is based on the system's interprocessor

communications capabilities. Although communications will be discussed later,

it is worth mentioning how it is a basis for decomposition. In some networks,

communications between nodes is very dense in some places, while in others it

is sparse. An example would be in a winner-take-all network, where each input

is fanned out to a cluster of richly connected nodes, but between clusters, there

are few connections. Depending on the specific architecture of the multiproces-

sor, the nodal clusters might have to be assigned to the same processor because

interprocessor cormunications is sparse, as in say, a ring type topology. If, in-

67



stead, each node was assigned a processor in this type of network, the time

spent in communications among the processors representing a single cluster

might result in excessive execution times.

Regardless of the basis for decomposition, the main goal is to distribute

the work load in such a manner that all the processors are efficiently utilized.

As will become apparent, there are many factors that influence the optimum

decomposition of a problem.

Load Balancing

One factor to consider in the decomposition of a neural network is that

of load balancing. Load balancing is defined as the process of balancing the

processors' work load to keep them uniformly busy. Thus, in the decomposi-

tion of a problem, it is not enough to assign tasks to processors, the workload

associated with each task must also be considered. For example, in the back-

propagation network mentioned above, processors assigned the task of sum-

ming inputs have no where near the computational load of those assigned the

error propagation task. Thus, to balance the load, more processors would be as-

signed to the error propagation task than to the summing task.

Balancing processor loads can be accomplished in two ways; statically

and dynamically. In static load balancing, the programmer or compiler decides

on how to decompose the program before it is executed and no decomposition

changes are allowed once the program begins execution. Dynamic load balanc-

68



ing, on the other hand. allows for adjustments in decomposition during program

execution to compensate for dynamic changes in computational loads. With

this type of load balancing, extra code is required to monitor these changes and

redistribute the loads. Thus, a significant amount of overhead is incurred with

dynamic load balancing. Still, in some cases, it results in increased performance,

thus it is an option to be considered [Bower 88].

Regardless of which methoc is used, there is general agreement that op-

timal load balancing is achieved when the problem can be decomposed into as

many concurrent modules or "grains" as possible [Kruatrachue 88]. These

grains can be "packed" onto processors in such a fashion as to balance the load,

making the most effective use of each processor.

Making the most effective use of each processor does not however,

guarantee an optimum execution time. Load balancing by itself often yields

decreased performance due to unavoidable communication delays. In fact,

there are cases where the execution time on several processors was greater

than that of one processor for applications with intensive communications

[Kruatrachue 87], [Wolfe 881. In these cases, although load balancing was ef-

fectively used, it was the lack of regard for the associated communications over-

head that caused the excess execution times. Thus, another very important fac-

tor to consider in decomposition is communication overhead.

69



Communication Overhead

In the context of parallel processing, communication overhead is that

communication necessary when one processor needs information from another

processor to perform its task. This overhead shows up as part of the workload

associated with each processor. That is, the computational load of each proces-

sor can be broken up into two parts. One part is that work associated with per-

forming the actual calculation, and is present in both single and multiprocessor

systems. The second part is that work associated with interprocessor com-

munications, and is therefore unique to multiprocessor systems.

In general, communication overhead is costly in terms of time and

resources. For example, in hypercube architectures with each processor repre-

senting a node, communication overhead is high if the interaction between

nodes that are not neighbors is intense. Messages must be passed via inter-

mediate processors to the final destirnation processor, which takes time and re-

quire extra resources (i.e., the intermediate processors). Thus, decompositions

considered along the spatial mappings lines describe above, have to take into

account the communication overhead costs.

Unfortunately, in trying to minimize communication overhead, load

balancing usually suffers. There is a "push-pull" relationship between com-

munication overhead and load balancing. In the extreme case of zero com-

munication overhead, a single processor is assigned all the tasks, which results

in the ultimate load imbalance. While the inverse is not necessarily true, a per-

70



fect load balance does require a less than minimum communication overhead.

Thus, an optimal decomposition must strike a balance between these two oppos-

ing factors. A lot of research is being done to try and find a general method for

determining the optimal decomposition Wolfe 87, 88]. Unfortunately, decom-

positions are so problem dependant that a general method does not seem pos-

sible.

Synchronization

The final factor that must be addressed in the efficient implementation

of a program on a multiprocessor system, is synchronization. Once a decom-

position is chosen that achieves load balancing and minimizes communication

overhead, the individual processors must somehow be synchronized.

Synchr,-nization is important because excessive execution times could result if

one processor is forced to wait for the results of another before it can continue

its task. Or even worse, invalid results could occur if the processors were not

properly synched.

How the processors are synchronized, depends on the particular decom-

position. For example, if each processor represents a single neural network

node, the processors could be synced such that they all execute the same in-

struction at the same time. This type of synchronization is referred to as com-

plete, and is a technique often used in SIMD type computer systems.

71



However, other decompositions are such that different processors are

performing different tasks at different times. Depending on the exact decom-

position and amount of interprocessor communications required, asynchronous

and loose synchronization would be required. In cases where the load balanc-

ing is such that a task is completed by one processor before a second processor

needs that information, no synchronization is really necessary. Thus, the proces-

sors can actually work asynchronously.

While this is the ideal type of synchronization, that is, no synchroniza-

tion at all, most decompositions would probably require a fair amount of inter-

processor communications. In these cases, what is referred to as loose

synchronization is required. In this type of synchronization, the processors are

allowed to operate asynchronously until such time that one or more processors

require information from another processor before they can continue their as-

signed tasks. If the other processor does not have the required information at

that time, the other processor must then wait until it becomes available. Thus,

loose synchronization is a cross between being completely synchronous and

completely asynchronous; it allows a great deal of flexibility in syncing only

those processors that need to communicate. As will be discussed in chapter V,

loose synchronization require very little overhead in terms of extra program

code to synchronize the various processors at various times.

72



Multiprocessor Performance Metrics

To analyze the effects of communications overhead and load balancing

for various program decompositions, a set of metrics must be developed. In

doing so, one can find the optimum decomposition and maximal speedup for a

given program. Additionally, a metric must also be developed to compare the

performance of multiprocessor systems to that of a single processor system.

With this in mind, the following set of metrics were developed based on Stone's

[88] R/C ratio concepts for determining how much overhead (C) is incurred per

unit of computation (R), and similar work by Bertsckas and Tsitiklis [89].

Three basic assumptions were made in developing these metrics:

0 That an average task time can be used which is close to the calculation

time incurred (Tcalc) by any task on any processor.

o When processors need to communicate with each other, an overhead

of Tcomm(i) is incurred. Also no communication overhead is in-

curred if tasks are being executed on the same processor and the tasks

need to communicate.

o Some portion of communication overhead operations lengthen the

total processing time because the overhead cannot be fully overlapped

with calculations.

Given these assumptions, one can think of the execution of a task on

each processor as consisting of two phases. The first phase is the calculation

phase, in which the processor is performing the calculations required to com-

- 73



plete the assigned task. The second phase is the communicat nn phase, -

which information is being exchanged with other processors.

With this in mind, we can now define average calculation and com-

munication overhead times.

I

Tacajc =~ TCaic 0) 4.1

Tacomm = OOMMQ) 4.2

Where T,,,(i) is the time required for processor i to make the calculation

for some assigned task, and Tcom(i) is the communication overhead time re-

quired to relay that information to another processor.

Using these definitions, what is the total execution time for an N proces-

sor system with M total tasks? To derive the general formulas, first consider

the two processor case. With two processors, the total execution time can be ap-

proximated by:

Ttot = Tw1 Max(M-kk) + Tawcmm(M-k,k)

where there are M total tasks and k are assigned to one processor and M-k to

the other processor. In equation 4.3, the first term denotes the calculation time

for two processors. Since the processors operate concurrently, the calculation

time is for the larger of the run times for both processors. That is, the larger of

Talc(M-k) time for one processor and Tw~,(k) for the second processor. The

second term denotes the pair wise communications that take place. For ex-

74



ample, if there are six total tasks and one processor is assigned two tasks, then,

in a worst case scenario, four of the tasks on one processor would need to com-

municate with the two tasks on the second processor, for a total of (6-2)2 or 8

TaCOmm units of time.

Extending from two to N processors, we would have ki tasks assigned to

the ith processor and equation 4.3 becomes:

Ttot = Tc,,, Max(ki) + T mm --ki(M - ki)(i)2 1

= Tacalc Max(ki) + M2

2 TM2 k1 ) .

In this equation, the first term denotes the largest calculation time incurred

among the N processors with ki tasks. The second term is again the com-

munication overhead, where the pair wise combinations of ki task and M-ki

tasks are summed. The 1/2 term comes into play because the summation does

not take into account for how the pairs are ordered, thus combinations of pairs

are counted twice in the summation. The M2 term results because the summa-

tion of ki over N processors is simple M, therefore we get M*M or M2 .

To approximate the sequential execution time for the same program.

only the calculation time has to be considered. Thus, we only need to sum up

each processor's calc times:

Tseq Tcalc (i) = N * Tacal c  4.5

75



Using these equations, we can now define speedup, efficiency, load im-

balance, and communication overhead.

Speedup -T 4.6
T~t

Efficiency TNq 4.7(N - Trot)

Load Imbalance - Tcc Max(ki) 4.8

Comm Overhead Tacomm (M2 -"ki) 4.9
2Trot

These equations now form a set of metrics that can be used to measure

multiprocessor performance for various decompositions. They also give an ap-

proximation of how to assign tasks to processors, and when parallel implementa-

tion is cost effective, as will be explained below.

Stone[88], Indurkhye[86], and Nicol[86] have shown that, depending on

the ratio of calculation time to communication overhead time, minimum execu-

tion time can be realized by one of two task-to-processor assignments. They

found that if:

> M 4.10

Taomm 2

then an even distribution of tasks among all N processors produces the fastest

execution time. In this context, even distribution means that if M is a multiple

of N, then each processor is assigned M/N tasks. If not, then most of the

76



processors are assigned the integer value of M/N with another processor getting

the remainder. For example, with 22 tasks for eight processors, seven of the

processors would be assigned three tasks and the eighth processor, one task. It

should also be noted that there is the possibility of some processors not being

utilized in an even distribution. For example, 22 tasks with seven processors

would result in five processors being assigned four tasks, the sixth processor as-

signed two tasks, and the seventh processor not being assigned any tasks.

In the event that:

Tacalc  M 4.11

Tacmm 2

then no matter how many processors are available, no task assignment

produces a faster execution time then assigning all the tasks to a single proces-

sor.

Several observations are worth noting here concerning the measure of

task calculation time to communication overhead time. First, this ratio high-

lights the "push-pull" relationship mentioned earlier concerning communication

overhead and load balancing. The ratio should be large to prevent the com-

munication overhead from becoming excessive, but at the same time it should

be small to create a large number of concurrent tasks. A second observation is

that computational efficiency does not necessarily guarantee a significant multi-

processor speedup. For example, the larger the ratio, the more efficient the

program computation because of the relatively shorter period of time spent for

77



communication overhead. However, if the large ratio is the result of decompos-

ing the problem into several large concurrent tasks, as opposed to many tasks,

the amount of parallelism is small and thus speedup is limited [Stone 88]. This

implies that it is not enough to rely on the calculation/communication ratio; the

other metrics must also be examined to determine overall performance.

Summary

The implementation of a program for multiprocessor execution is not an

easy task. One must consider how the program can be decomposed, how to

achieve an efficient load balance, the effect of communication overhead, and

how the tasks between processors need to be synchronized. The number of

processors, the particular multiprocessor architecture (especially interprocessor

communications), and how they are related to the characteristics of the specific

program must also be considered in the implementation. As such, the develop-

ment of a set of metrics to measure load imbalance, speedup, communication

overhead, and efficiency is essential for the efficient decomposition of a

program.

78



Chapter V

Multiprocessor Methodologies

Introduction

Based on the four key concepts addressed in chapter four, I developed

several methodologies for the implementation of neural networks on multi-

processor systems. With one exception, the methodologies were made as

generic as possible, without regard for a particular type of neural network or

multiprocessor system. In doing this, the methodologies would have the widest

possible applications.

These methodologies serve as a "blueprint" for network decompositions

that can be applied to a wide range of multiprocessor and neural network ar-

chitectures. That is, it details how the network is to be decomposed, how the

load and communications are to be balanced, and how to synchronize the

various tasks. However, just as a blueprint, it does not specify what "tools" to

use to accomplish these tasks because different systems utilize different tools.

For example, the blueprint may specify that the results of some task on proces-

79



sor A be communicated to all other processors. Depending on the particular

multiprocessor, this may mean passing messages via other processors to com-

municate the information, or setting up a common, shared block of memory on

another system. Thus, having the blueprint specify what is to be done and not

the specific manner, enables the methodologies to be machine-independent

and portable.

A total of four methodologies were developed. Two were based on

general network topology and are called the Layer and Cross-layer

methodologies. The other two were based on the functional aspects of the net-

work, irrespective of network topology and are called the Pipeline and Hybrid

epoch-pattern methodologies. The next four sections present each methodol-

ogy in detail and the rationale behind their development.

It should be noted that in these methodologies, it was assumed that for

any practical networks the number of nodes in the network would far exceed

the number of processors. Otherwise, another logical decomposition would

have been the assignment of one processor per node.

Layer Method

In the Layer approach, the network is decomposed on the basis of how

the nodes are layered in the network. Figure 5-1 depicts how processors are as-

signed to each layer. As shown, one processor is assigned to each layer. If

80



more processors are available, then the layer can be subdivided as indicated by

the dashed lines.

With this type of decomposition the processors would be kept busy by

pipelining data into the network. That is, after the first processor (layer 0)

processes irdormation for data set P, its' results are passed on to processor two

(layer 1). Then, the first processor begins processing data from data set P + 1.

Thus, depending on the number of layers, the pipeline is full after N data sets,

where N is the number of layers in the network. Figure 5-2 illustrates the

pipeline for a two layer network (remember the input layer is usually not

counted in the numbering of layers).

Output

Layer 2 Processor 3

Layer 1 Processor 2

Layer 0 Processor I

Input

Figure 5-1

Layer Method of Network Decomposition

81



Depending on the particular algorithm being implemented and the num-

ber of training patterns, the concurrency realized by the layered pipeline is vari-

able. For example, in figure 5-2 assume there are a total of six patterns used

for training the network and that the weights are adjusted after the sixth pat-

tern. Further assume, as a worst case scenario, that the weights must be

modified on a layer by layer basis (as in the case for backpropagation). This

then means that each processor must operate sequential when adjusting the

weights as shown' in the figure. Thus, full concurrency of all the processors is

only realized for four time periods out of the total of twelve it takes to process

six patterns and adjust the weights. If one were to train over twenty patterns,

then out of a total of 26 time periods ( 2 for fill time + 2 for "draining" + 4

weight adjust + 18 full pipeline) eighteen units would be spent in full concur-

rency. Thus, in the first example, the best possible speed up would be less than

2 ( 22/12) with an efficiency of approximately 60 percent (23/(3"12)) and the

second, a speed up of approximately 2.5 (64/26)with an efficiency of ap-

proximately 80 percent (64/78). Generalizing for P patterns with three proces-

sors the speed up is :

(3*P + 4)/(P +6)

Thus, as P becomes much greater than 6, the speed up approaches a maximum

value of 3 with 100 percent efficiency.

82



G.) G) D

C.) U U

CQ c

Nu cv, E

ara
-a 5.

- 4) 4

CQU

C4*

- ~ 83



It should be noted that the time units are relative to the number of

processors per layer. For example, if there is one processor per layer it is not

unreasonable to approximate the time for the execution of a task in the

pipeline as being the same (discounting any communication overhead) for a

single processor executing the tasks sequentially. However, with more than one

processor per layer, the time to complete a task is significantly reduced. And,

since in most networks, there is no intra-layer communication, no communica-

tion overhead is incurred by assigning more processors to the same layer. Thus,

the speed up for that layer would be close to ideal ( Other types of overhead

are incurred, such as the time it takes to execute the extra code for implement-

ing a second processor, that prevent ideal speed ups from being achieved).

Load balancing for this methodology is straight forward. Each processor

is assigned the number of nodes in each layer. If there is a big discrepancy in

the number of nodes from one layer to another, additional processors could

then be used in the layer with the larger number of nodes. For example, if

layer zero contains ten nodes; layer one; twenty, and layer two; ten, then layer

one would have two processors assigned to it.

The communication overhead aspects of this method are more multi-

processor architecture dependant then the other factors. In a bus oriented sys-

tem, overhead could be kept down by having the results of each layer stored in

shared memory locations, preferably with memory interleaving. The processors

84



would have to be synced such that as one processor was accessing memory for a

new data set, the other processors would be processing their respective data.

In a hypercube architecture, to minimize overhead, neighboring process-

ing units would represent different layers of the network. This concept is il-

lustrated in figure 5-3. The figure shows two processors dedicated to each layer.

Since most networks do not require intra-layer communications between nodes,

the processing units representing those nodes do not have to be adjacent to one

another. However, to minimize communication times, the processing units rep-

resenting adjacent layers should be as physically close to one another as pos-

sible, as shown in the fivure.

D~2*L

Figure 5-3
Layer assignment for a 2d Hypercube architecture

The number indicate which layer is assigned to which processing unit (PU). Note that most
PU's directly connect with their next respective layers. The PU's marked * can be used as al-
ternate communication paths for the layer I PUs to communicate with the layer 2 PUs.

85



As alluded to earlier, synchronization between processors representing

different layers is also very important in this methodology. Each processor can

operate asynchronously until it reaches a critical section of code when it re-

quires information from another processor. Since the tasks are evenly dis-

tributed, execution times for each task should be approximately the same. Of-

fsetting the time each processor starts its tasks would enable the processors to

remain in loose synchronization with one another. However, to minimize this

offset time and account for variations in processor execution times, semaphores

should be utilized. The semaphores will enable the offsets to be optimized and

thereby minimizing the communication overhead. They will also act as

resynchronizers in the event that one or more processors are delayed in output-

ting their results.

Cross-Layer Method

A variation of the Layer method is the Cross-layer method. In this

method, instead of assigning the processors on the basis of nodes within a layer,

processors are assigned to nodes across the layer. Figure 5-4 illustrates this

method's principle of decomposition. From the figure one can see how this

methodology assigns processors to vertical columns of nodes as opposed to the

Layer's method of assigning horizontal layers.

Also, unlike the Layer method, the Cross-layer method does not use

pipelining of the data sets. Because of the vertical decomposition, it would be

86



a logistical nightmare in trying to keep the data sets in proper sequence and be

able to properly adjust the weights. Instead, this method maintains a tighter

control over the processors almost to the point of operating as a SIMD device.

Exactly how this is done will be explained below.

The main purpose of this methodology is to eliminate as much inter-

processor communication as possible. To see how this is possible, again con-

sider figure 5-4. In each vertical column there are four inputs ( two from layer

one nodes and two from layer two nodes) and four outputs (two from layer

zero nodes and two from layer one nodes). Had the network been decomposed

by layers there would have been nine inputs to layer one from layer zero and

nine outputs from layer one to layer two. Thus, with the Cross-layer decomposi-

tion, there is a significant reduction in the amount of information that must be

shared between processors.

This method is also advantageous in that large networks can be easily

decomposed in a balanced manner. T1 - - -jority of the neural networks being

simulated today are not very high (i.e. ha..- a small number of layerS) but are

fairly wide (20-100 nodes per layer). Thus, with a vertical decomposition divid-

ing the network up into nodes segments of equal size is a fairly trivial problem.

Even the assignment of nodes to an odd number of processors is easily hand-

led, as was shown above. The same cannot be said for layer-based decomposi-

tions.

87



OUTPUT

Processor 1 Processor 2 Processor 3

INPUT

Figure 5-4
Cross Layer Decomposition

00 00 0 0

000 000 000
_ 0 0 0

Processor 1 Processor 2 Processor 3

Figure 5-5

Cross Layer Decomposition with differing number of Node per layer (Connections omitted for
clarity)

88



Load balancing is accomplished in a manner similar to the one

described in the Layer method. The only difference being that vertical slices of

the network are taken as opposed to horizontal. To illustrate how load balanc-

ing can be achieved, figure 5-5 shows an example where the number of nodes

in each layer is different. If additional processors are available, then further

decomposition can take place by dividing each cross layer section into horizon-

tal slices as indicated by the dashed lines.

Communications overhead with this methodology is a somewhat easier

task for several reasons. One reason, as pointed out above, is that there are

fewer inter-pro.-essor lines of communication to worry about. Secondly, be-

cause information flows up and out in most networks, the upward flow of infor-

mation is within the processor. This means less overhead to worry about in

terms of coding and communications.

Unfortunately there is a tradeoff between the communications overhead

and the synchronization with the Cross-layer method. In simplifying the com-

munications overhead with a vertical decomposition, the synchronization of the

processors is more critical. A tighter synchronization is required because each

processor must assure that the information from each node in each layer is com-

municated to the other processors at the appropriate time.

To better illustrates this point consider the following. Each layer zero

node on each processor can execute its' required computations independently

of the other layer zero nodes. However, each layer one node on each proces-

89



sor requires information from layer zero nodes before they can begin executing

their computations. Since all but a few of the layer zero nodes are on N-1 dif-

ferent processors, the layer zero node's results must be communicated to the

Nth processor before the Nth processor's layer one node can begin its computa-

tion. This is also true for the other layer one nodes on the other N-1 proces-

sors. The overall result is the use of more synchronization code then with the

layer method. With the Cross-layer method, synchronization coding is required

for all nodes with the exception of those in the input layer (i.e. layer zero).

Depending on the particular multiprocessor architecture, the extra ex-

ecution time incurred by the synchronization code and time delays caused by

waiting for information could negate any processor speedup. To minimize

these delays, hypercube and bus-oriented topologies need to incorporate the

same techniques described in the Layer method. Namely, putting processors

representing communicating nodes as physically close together as possible, and

placing information in interleaved, shared memory locations.

Pipeline Method

The Pipeline approach examines the functional aspects of the network

to determine what tasks can be done concurrently. That is, rather than looking

at the network's topology, we examine the network's paradigms to identify any

parallelism that can be expioited. This approach is more in line with research

being done in the Computer Science field to use several processors on a single

90



program. However, it is different in that we are assuming the entire multi-

processor is dedicated to implementing a neural network and that no multi-

programming with multiprocessors will take place (i.e. use multiple processors

on a single job but have multiple jobs running on the system as well).

There are three easily identifiable levels of parallelism that can be

generalized for neural networks:

o Parallelism at the subroutine level, where multiple subroutine

calls can be executed in parallel.

o Parallelism at the loop level, where the multiple iterations of a

DO loop can be executed in parallel.

o Parallelism at the block level, where the operations of sections,

or blocks of code can be executed in parallel.

The data dependance relationship between the subroutines, loops, and

blocks is the determining factor in selecting which level of parallelism to ex-

ploit for a particular neural network. To better understand this data depen-

dance relationship, consider the following examples.

In a DO loop there could be instances where the data in one iteration of

the loop is required by the next iteration. For example, in:

do i 1,n

Var(i) = Var(i-1) * Delta(i) + Thres(i)

endofdo

91



the element of Var computed during iteration i is used during the next iteration

i + 1. Thus, in trying to implement this type of do loop in parallel, each proces-

sor would have to wait for the other processor to finish before it could execute

its' iteration of the loop. Because this type of data dependency is not uncom-

mon in neural network algorithms, this level of parallelism is not desirable.

At the subroutine level, a similar data dependance could exist. One

could have the situation where the results of one subroutine may be required

before a second subroutine can begin execution. In this situation, it might be

possible to offset the start times of the subroutines such that by the time the

second subroutine begins the necessary data is available. Another possibility

would be to group the data dependant subroutine together and execute them

on the same processor. This is exactly what is done at the block level of paral-

lelism.

At the block level, the data dependance can be structured such that each

processor operates with as much autonomy as possible. Blocks of code iden-

tified as exhibiting parallelism can be checked for data dependance, and,

depending on the amount of dependance, could be assigned to the same proces-

sor. Because of this flexibility, one has more latitude in making processor assign-

ments with this level of parallelism than with the other two levels. For this

reason, and the fact that network paradigms are extremely diverse, block level

parallelism was selected as the basis for my network decompositions.

92



Unlike the previous two methodologies, decompositions using the

Pipeline methodology are more labor intensive. This is mainly due to the fact

that in order to decompose the network, one needs a good understanding of

the particular network paradigm, and as such, the decompositions are more

"custom tailored". This does not however, mean that a step-by-step approach to

decompositions is not possible; only that it requires more work.

The first step in the decomposition is to determine those sections of

code that are suitable for concurrent execution. Depending on the particular

multiprocessor this may simply mean running an Operating system routine such

as profile in UNIX, or writing several programs to determine the number of

times a function is called and the variables required to execute the function.

Once these sections have been identified, the next step is to place them

into N blocks, where N equals the number of available processors. To deter-

mine how to group these sections into blocks, the amount of computation per

section (i.e. load) and the data dependance between the sections should be the

governing factors. Depending on the computational load of the sections, one

block may have to consist of two or three sections of code whereas another

block might only contain one section in order to balance the overall workload.

The other consideration will be how much communication overhead will be in-

curred as a result of the data dependance between sections on different proces-

sors.

93



Because of the strong data dependance exhibited in neural network

paradigms, "pipelining" the blocks on the different processors is the most effi-

cient means of program execution. What is meant by pipelining in this sense is

that the execution of the various blocks are staggered in time just enough that

as one processor completes its first computation, the result is "piped" over to

the second processor so it can begin execution.

For example, assume one processor has some code where a DO loop is

computing a result which is required by another section of code on a second

processor. As soon as the first iteration of the DO loop is completed, the result

can be "piped" over to the second processor, allowing the other section of code

to begin execution. To take into account for differences in the computation

times between the sections of code, the amount of stagger could be varied so as

to produce a buffer. That is, wait X iterations of the DO loop in processor one

before beginning the execution of the code on processor two.

The piping of the results between processors takes care of some of the

synchronization requirements for this methodology. However, to assure that

synchronization is maintained, semaphores should also be utilized. If the

processors are properly staggered however, the semaphores should not result in

any "wait states" unless an unexpected interrupt occurs; throwing off the

synchronization.

The other synchronization requirement of the system is for the

resynchronization of the blocks. If there is a low data dependency between

94



blocks on different processors, the processors can operate asynchronously most

of the time. However, as new data sets are presented, the processors may need

to be resynched to assure they are operating on the same data sets. To ac-

complish this, a master sync needs to be established. Here again, using a

semaphore will suffice in resynching the processors.

Figure 5-6 illustrates the overall process. In the figure there are four

processors. Three of the processors are assigned two sections of code each,

with the last processor being assigned three sections. Load balancing is such

that all four processors have approximately the same amount of work.

However, the data dependance is such that processors one and two have a

strong data dependency as do processors three and four. As such, the start

times for processors two and four must be slightly staggered to allow processor

one and three to "pipe" their results. Note that since there is no data depen-

dance between the first two processors (i.e. processors one and two ) and the

last two processors (i.e processors three and four), these two sets of processors

can operate completely independently of one another (save the resynching that

must take place). This can be seen by the fact that processors one and three

begin execution at the same time.

Also note that there are various periods of time when several of the

processors are idle. This is due to the resynchronization that must take place be-

tween the data sets. In this particular case, nothing can be done to shorten the

idle time because the sections of code on processor three are the limiting fac-

95



Processor 1 Proce or 2 Processor 3 Processor 4
offst offset

DATAsection la section 2a section 3a section 4a I

section lb section 2b

section4b I ME
section 3b

section 2c
idle ' idle idle

seto a offier offet
seection 2a

secion2a section 3a section 4a

DATA SET N+I

Figure 5-6

Pipeline Approach

tor. That is, there is no idle time on processor three between data sets, there-

fore the other processors are forced to wait for processor three to complete its'

tasks before starting another data set.

Hybrid Epoch-Pattern Method

The Hybrid Epoch-Pattern methodology was developed specifically for

error correcting algorithms, such as backpropagation. This particular methodol-

ogy was developed for several reasons. The first reason was to see how much

more speedup might be gained by developing a methodology for a specific class

of neural networks. Since backpropagation is by far the most popular network

paradigm, an error correcting methodology was chosen. The second reason was

96



that I have some definite ideas on how to modify the classic pattern and epoch

training methods used in error correction networks to make the network con-

verge to a solution in less time on multiple processors.

In classic training methods one either trains over patterns or epochs. In

pattern training, weight adjustments are made after each pattern is presented,

whereas in epoch training, pattern errors are summed and weight adjustments

are only made after all the patterns are presented. In pattern training, if there

are a large number of patterns, adjusting the weights after each pattern can be

very time consuming. One might therefore assume, for a large number of pat-

terns, that epoch training would be more desirable. However, epoch training

has a disadvantage in that weight adjustments would only be made after a con-

siderable amount of computation time was spent doing pattern calculations.

Thus, for a large number of patterns, a disproportionate amount of time is

spent on pattern computations as compared to the time spent for weight adjust-

ments. The overall result is an exceedingly long time for the network to con-

verge to a solution. In fact, Rumelhart and McClelland [88] state that for large

sets of patterns, pattern training is the preferred method, even with its draw-

backs.

In the hybrid epoch-pattern method I have developed, I break the pat-

terns up into "pseudo epochs" so as to make weight adjustments after a

reasonable number of patterns. For example, if there are 75 patterns for a com-

plete data set, they could be broken up into three "pseudo epochs" of 25. Thus,

97



after 25 patterns are presented, a weight adjustment would take place. This rep-

resents a savings of 73 weight adjustment calculations over the pattern method

and a gain of two weight adjustments over the epoch method. I believe that a

multiprocessor implementation of this hybrid method would significantly

reduce the network's time to convergence.

In using this hybrid method, an anomaly results in how the patterns are

grouped for weight adjustments. An example of this anomaly is shown in figure

5-7. In the figure, there are ten patterns that are being trained on a system

with three processors. Thus, the epoch size is three. As shown, the patterns

are grouped into sets of three, where each set represents the patterns over

which the weight adjustments are made. Note that for each pattern there are

three different groupings. For example, for pattern one the groupings are

(1,2,3), (10,1,2), and (9,10,1). Further note that these grouping repeat, or cycle,

after ten pseudo-epoch iterations.

The number of pseudo-epoch groupings between cycles can be general-

ized to:

P, if N is not a multiple of P

P/2, if P and N are even, but N is not a multiple of P

P/N, if N is a multiple of P

where P is the total number of patterns and N is the number of proces-

sors

98



(1, 2,3) (4,5,6) (7, 8, 9)

(10, 1,2) (3, 4, 5) (6, 7, 8)

(9, 10, 1) (2, 3, 4) (5, 6, 7)

(8,9, 10)] (1, 2, 3) (4,5, 6)

(7, 8,9) (10, 1,2) (3,4, 5)

Figure 5-7
Hybrid Epoch Pattern training

The numbers represent the data set for a network and the parenthesis, the
"pseudo epochs". Weight adjustments occur after the last pattern in each
pseudo epoch. The figure shows the groupings for 10 patterns on a three
processor system. Note how the groups cycle (denoted by the brackets) after 10
such groupings.

Thus, although the groupings change after every weight adjustment, they are

cyclic. This cycling is important because it provides the researcher with a

means to consistently measure intermediate results, and a basis for comparing

this training method to the pattern and epoch methods.

Decomposition of networks using this methodology can be accomplished

in several ways, depending on the number and type of processors. For a system

99



with a small number of relatively powerful processors, each processor could be

assigned one data set. In this case, the size of the pseudo epochs would be

equal to the number of processors. Figure 5-8 illustrates this concept for four

processors. Note, that in this particular situation, we are assuming a worst case

scenario in that the weight adjustment code cannot be split up between proces-

sors, and therefore idle time is incurred by the other three processors. Essen-

tially all that is required in this type of decomposition are multiple copies of

the program for each processor, with one of the processors handling the weight

adjustments. The processors can operate asynchronously in this case with only

minor semaphore coding to allow for the weight adjustment and idle time.

If more processors are available, a second method of decomposing the

network would be to use the pipeline method described earlier and group the

processors into sets. Each set of processors would then operate on one data

set. Thus, in this situation, the size of the pseudo epochs would be equal to the

number of sets of processors. Figure 5-9 illustrates this concept.

In this figure, the network functions are decomposed into two blocks, as

described in the pipeline section, thus at least two processors are required to

implement the network. Since four processors are available, two processors as

assigned the task of computing data set i while the other two compute data set

i + 1. The pseudo epoch size in this case is two, meaning weight adjustments

are required after every two patterns. As shown in the figure, the first set of

100



processors (i.e. processors 1 and 2) handle the weight adjustment while the

second set of processors are idle.

Processor 1 Processor 2 Processor 3 Processor 4

read pat i read pat i+1 read pat i+2 read pat i+3

pseudo process process process process

epoch j pattern i pattern i+1 pattern i+2 pattern i+3

adjust wts idle idle idle

read pat i+4 read pat i+5 read pat i+6 read pat i+7

pseudo

epoch j+I

Figure 5-8
Hybrid Epoch Pattern Methodology

The figure illustrates the timing diagram for four processors and the pseudo
epochs they create.

In using groups of processors to compute each data set, two levels of

synchronization would be required. The first level would be the synchroniza-

tion of the processors within each group. This is exactly the synchronization

that was described in the last section for the pipeline method. The second level

of synchronization would be the synchronization required between the groups

of processors. With this method, each group of processors would be operating

101



asynchronously until it came time to adjust the weights. At that point, they

would either share the weight adjustment computations, if possible, or one

processor would act as a master, while the others were idle.

Data Sets i, i+2 Data Sets i+1, i+3

Processor 1 Processor 2 Processor 3 Processor 4

read pat i idle read pat i+1 idle

process code process code process code process code

pat i pat i pat i+1 pat i+ 1

adjust idle
wis adjust wts idle

read pat i+2 idle read pat i+3 idle

process code process code process code process code

pat i+2 pat i+2 pat i+3 pat i+3

Figure 5-9
Pipelining of pseudo epochs

The figure depicts two processors being used per data set to process the net-

Another important feature of this methodology is that it allows the

method of training to be varied anywhere between the classical pattern and

epoch methods. That is, the processors can be set up such that the weights are

adjusted after every pattern (i.e. pattern method), after the entire set of pat-

102



terns (i.e. epoch method), or after any number of patterns in between these two

extremes.

Example Implementation of Methodologies

As a means of summarizing the information presented in the previous

sections, Table 5-1 provides a comparison of the four methodologies. It com-

pares each method based on the four key concepts present in Chapter IV. In

addition, it lists the advantages and disadvantages of each methodology.

With these four methodologies now presented, it is worthwhile to examine an

example network for a better understanding of how these methodologies might

be implemented. For the purposes of this example, I will make the following as-

sumptions:

0 The network, named the 1881 network, consists of 3 layers with a

total of 36 nodes and 224 connections. The network implements

the backpropagation algorithm. Figure 5-10 illustrates the net-

work topology.

The network is to be implemented on a four processor computer

system utilizing a shared memory bus.

The network is to be trained on a 50 pattern training set.

The next four sections detil how the methodologies are implemented.

103



- 50

-tj~

E0 Or-E

~ -j

02E

m u

V-1~

10



Output

Layer3 0 0 0 0 0 0 0 0 0 0

Layer2 0 0 0 0 0 0 0 0

Layer 1 0 0 0 0 0 0 0 0

Layer 0 0 0 0 0 0 0 0 0 0

Input

Figure 5-10
1881 Three Layer Network

Processor4 0 0 0 0 00 0

Processor3 U0 0 0 0 0 0 0 0

Processor2 0 0 0 0 0 0 0

Processori 0 0 0 0 0 0 0 0 0 0

Figure 5-11
Layer Decomposition of 1881 Network

105



Layer

Figure 5-11 illustrates the processor assignment for the Layer method.

As shown, each processor is assigned a single layer of the network. While the

connections between each node are not shown for clarity, the number of con-

nections between each processor is as follows:

Processor 1 and 2 80

Processor 2 and 3 64

Processor 3 and 4 80

With this particular network's decomposition, a slight load imbalance exists.

Since layer 0 acts as a distribution point for the inputs, processor one has a

much lighter processing load than the other three processors. Also in terms of

communications, process two only has 64 activation values to pass along

whereas processors one and three each have 80. And, although processor four

only has ten outputs to send to the "outside world", it has the extra task of

processing the output error (i.e., tpj-opj) that the other processes do not. Thus,

there is a slight imbalance in the load between each processor. Had the num-

ber of nodes in each layer been the same, there would have been a better load

balance for processor two, but processor one's load would have remained the

same.

As alluded to above, the communication overhead for each processor is

dependent on the number of connections between each processor. For ex-

ample, processor's one and three have more information to pass than do proces-

106



sor's two and four. In terms of the overall communication overhead, when, in

time, each processor is actively sending information to another processor, deter-

mines the total amount of communication overhead. For example, consider

those points in time when all four processors are operating concurrently

(figure 5-12, from time step 4 on). Assuming processor one has just started

computing data set four, then at times i and i + 1, each processor will have

pipelined the following data sets:

Time i Time i + 1

Processor 1 data set 4 5

Processor 2 data set 3 4

Processor 3 data set 2 3

Processor 4 data set 1 2

After each processor finishes processing its' data set, it must pass the informa-

tion on to the next processor so it will have it for the next time step. Assuming

all four processors finish at approximately the same time, they will all then try

to access the memory bus, and contention will occur. Thus, the communication

overhead is greatest at these times.

In this particular case however, the load imbalance offsets some of the

contention for the memory bus, helping to lower the communication overhead.

Because processor one's load is "light", it will finish before the other processors

so it will access the bus first. Processor two and three have fewer nodes to

107



00

0V
00

1080



process, thus they will finish before processor four. Although there will be con-

tention for the bus, at this point, at least processor two will have less informa-

tion to pass (64 vs 80).

It should be noted here that the fact that contention occurs is not neces-

sarily bad. In this particular example contention would probably not significant-

ly slow down the overall processing speed because of the small number of con-

nections between the processors. However, as the network size grows to

thousands, and tens of thousands of connections between processor, contention

would significantly reduce any speedups.

Synchronization of this network is fairly straightforward. Since each

processor is working on a different data set and the results are place into

memory, the only time synchronization is required is when each processor ini-

tially begins its' training set and when processor one performs weight adjust-

ments. Figure 5-12 illustrates the pipelining and weight adjustment for the net-

work. Processor two cannot begin until processor one finishes its results on

data set one. A similar situation exists for processors three and four. Once the

execution of the training set (i.e. all fifty patterns) is completed, processor one

is required to wait for processor four to finish before performing the weight ad-

justment. As mentioned previously, a simple set of semaphores is all that is re-

quired to keep the processors in this loose form of synchronization.

The advantage of the layer method lies in its simplicity; one processor is

assigned to each layer, the data sets are "piped", and loose synchronization is all

109
a-



that is required. The disadvantages of the method however, are the load im-

balances and probable communication overhead that will result as the network

grows in size.

Cross-Layer

Figure 5-13 illustrates the processor assignment for the Cross-layer

method. As shown, processors one and four have two more nodes than proces-

sors two and three. The breakdown of the number of connections between

each processor is as follows:

Input Output

Processor 1 44 44

Processor 2 40 40

Processor 3 40 40

Processor 4 44 44

Note that while each processor has been assigned the same number of nodes as

in the layer method, the number of connections in more evenly distributed

among the processors with the Cross-layer method.

In terms of load balancing, the Cross-layer method is better balanced

then the Layer method. Because the Cross- layer utilizes vertical slices, each

processor has part of the "light" load of layer 0, where its only function is to dis-

tribute weighted inputs. Each processor in the Cross-layer method also handles

110
a-"



part of the output layer's initial error correction, again a fairly "light loaded"

task. Thus, in terms of load balancing, the Cross-layer method is simpler, yet

superior than the Layer method.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Processor I Processor 2 Processor 3 Processor 4

Figure 5-13
Cross-Layer Decomposition of 1881 Network

Cross-layer communication overhead is also somewhat less than the

overhead exhibited in the layer method for two reason. First, as mentioned

above, the connections are more evenly distributed among the processors.

Thus, they all have about the same amount of information to pass and receive.

Secondly, because the connections are distributed among several layers, the

processor only needs to send and receive short "packets" of data. That is, the

processors do not need to send or receive all of their data at once because the

data is on several layers, and the layers are processed sequentially within each

processor.

The disadvantage of the Cross-layer method lies in the complexity of the

synchronization that is required. While synchronization in the Layer method is

fairly straight forward, it is more complex in the Cross-layer method. Because

000000000
000 000



portions of each layer are being processed in parallel on all four processors

they need to be carefully synchronized to avoid erroneous data from being

processed. Thus, each processor must check to make sure it has received the

required data from the other processor before processing layers one, two, and

three. This careful synchronization requires extra coding not required in the

Layer method. It is possible therefore, that the extra coding would offset any

advantages gained in the more effecient load balancing and communication

overhead.

Pipeline

Unlike the previous two topological based decompositions, the Pipeline

method bases its decomposition on any parallelism exhibited by the network's

algorithms. Thus, the first step in the decomposition is to determine those sec-

tions of code for concurrent operation and identify an common variables that

must be shared.

As mentioned in Chapter II the back propagation algorithm can be

divided into four basic steps:

o Compute output

o Calculate error for each output node

o Backpropagate error to previous layers

o Calculate weight changes

112



Within each of these four basic steps, there are some sub-tasks that can

be executed in parallel. For example, in the error calculation, the error array

must be zeroed, the initial error calculated, the Least Mean Squared (LMS)

error calculated, and the delta error, for those nodes connected to the output

layer, calculated. The initial error and the LMS calculations can be done in

parallel and the delta error calculations can begin as soon as a node's initial

error calculation is completed. Thus, there is full concurrency in the error and

LMS calculation, and a "pipeline" concurrency in the delta calculation (By

"pipeline" concurrency we mean that once a node's error is calculated the error

is "piped" to the next processor where its' delta error is then calculated. Thus,

as one processor is calculating node j's error, a second processor can calculate

node j-1's delta error).

In addition to this parallelism, some of the four basic backpropagation

steps can be executed with "pipeline" concurrency. For example, in the back-

propagation of the error and the weight adjustment steps, weight adjustments

can begin as soon as the error for a particular node is determined. Thus, one

can stagger the time each processor begins those two steps, such that as one

process computes the error for a node and stats on another node, a second

processor can compute the weight adjustments for the first node.

Figure 5-14 illustrates how the backpropagation algorithm can be decom-

posed and timed among four processors to take advantage of both full and

"pipeline" parallelism. Note that while each processor can share in computing

113
IV;



the output, the error computation cannot start until the compute output func-

tion is finished, thus processors one, two, and three are idle for a short period

of time.

Processor 1 Processor 2 Processor 3 Processor 4

read pattern i

compute output compute output compute output
ilidecompute output

idle _de_____

compute error compute stats compute delia read pattern i+ 1
Prrnr

updte scee adjust wgts adjust wgts adjust wgts

Figure 5-14
Decomposition and timing diagram for 1881 network using Pipeline method

Decomposition and load balancing using the Pipeline method is more

difficult than in the Layer and Cross-layer methods because it relies on the

amount of parallelism that can be found in the network algorithms. To exploit

the parallelism to the fullest, this often requires a thorough understanding of

the network algorithms. Thus, the decomposition and load balancing for the

Pipeline method are more labor intensive. However, the load balancing adjust-

ment can be made somewhat easier, if a lot of parallelism can be found, for one

has more flexibility in processor assignments.

Communication overhead in the Pipeline method is very dependent on

the number of shared variables between processors. Unlike the topology based

114



methods, where the source of the communication overhead is the number of

connections, in the Pipeline method, the source is the number of shared vari-

ables. From one network to another, the number of variables that need to be

shared is different, depending on how the algorithm is written and how much

parallelism is found. In this particular example, the processors must share the

activation outputs in order for all four processors to compute the output.

However, because the two backpropagation function, compute error and com-

pute stats are completely independent, none of their variables need to be

shared among the processors. Thus, one advantage of the Pipeline method is

that communication overhead is not necessarily fixed, as in the topology based

methods. With the flexibility in load balancing, some dependent variables can

be assigned to the same processor, thus helping to reduce communication over-

head.

The amount of synchronization required of the various processors using

this method, depends on the data dependence between each processor. As

mentioned above, all four processors have shared variables for compute out,

but none for compute error and stats. Thus, the compute output function must

be synched among all four processors whereas compute stat and compute error

can be asynchronous.

From the above discussion it is apparent that, depending on the amount

of parallelism that can be found in the algorithm, the Pipeline method is more

flexible in terms of load balancing, communication overhead and synchroniza-

115



tion. The more parallelism that can be found, the more latitude there is for

load balancing. Flexibility in load balancing in turn, enables dependent tasks to

be grouped, lowering communication overhead, and making synchronization an

easier task. The tradeoff for this extra flexibility however, lies in the amount

of time required to thoroughly understand the algorithm in order to exploit as

much parallelism as possible.

Hybrid Epoch-Pattern Method

As with the Pipeline method, the basis for the Hybrid Epoch-pattern

decomposition is also functional. Figure 5-15 illustrates the decomposition and

timing diagram for the 1881 network using the hybrid epoch-pattern approach.

This particular decomposition assumes a weight adjustment after eight patterns

(i.e., a pseudo epoch of eight). Note that two forms of parallelism are ex-

ploited in this example. The first, is simply the processing of a separate pattern

on each processor. That is,. each processor computes the output and resulting

error for a separate pattern in parallel. The second, is the pipeline parallelism

exhibited by the weight adjustment function, which makes use of the same

decomposition technique explained above for the Pipeline method.

This networks basis for decomposition offers more flexibility than the

Pipeline method. With the Hybrid method, one can simply decompose the net-

work by assigning one processor to each pattern, and any one of the processors

to do the weight adjustments. Performing a decomposition in this manner is

116
a.



very easy, although it means the other n-i processors are idle during the weight

adjustment period (as an example see Figure 5-8). For a more rigorous decom-

position, instead of assigning one processor to perform the weight adjustments,

the parallelism in the weight adjustment function could be examined and ex-

ploited, as was done in this particular case. Thus, depending on which route is

taken, the decomposition can be very simplistic or involve a study of the algo-

rithms parallelism, as in the Pipeline method.

Processor 1 Processor 2 Processor 3 Processor 4

read pat i read pat i+1 read pat i+2 read pat i+3

process process process process

pattern i pattern i+1 pattern i+2 pattern i+3

read pat i+4 read pat i+5 read pat i+6 read pat i+7

process process process process
pattern i+4 pattern i+5 pattern i+6 pattern i+7

adjust wts idle idle
a d ju s t w ts adj u st w ts

tadjust wts

Figure 5-15
Decomposition and timing diagram for 1881 network using Hybrid Epoch Pattern

Methodology

Regardless of the decomposition method chosen, the load is very well

balanced among processors. Each processor would be operating much like a

117
a'



SIMD machine where each processor executes the same instructions on a dif-

ferent training pattern. The difference in this case however, is that each proces-

sor would operate asynchronously and have its own copy of the instructions.

Communication overhead is low for this method. The only variables

that need to be shared between processor are the errors computed for each pat-

tern and the weighted error derivatives (wed) necessary for the weight adjust-

ment function. Thus, the number of variables that need to be communicated

between processors is small.

In terms of synchronization, this method allows the processors to

operate asynchronously until it is time for a weight adjustment (in this example,

after every eight patterns). Even then, synchronization is fairly easy because of

the small number of variables that are shared. Unlike the Pipeline method,

where there are more shared variables and more functions split between proces-

sors, the Hybrid method only has to synchronize the weight adjustment func-

tion. Thus, synchronization of the Hybrid method is more easily accomplished

than in the Pipeline method.

Table 5-2 summarizes the merits of each method for the implementation

of the 1881 network. As shown in the table, each method is compared with the

others on the basis of ease of decomposition, ease of load balancing, amount of

communication overhead and ease of synchronization. The overall advantages

and disadvantages of each method are also summarized in the table.

l. 118



Sb E

2 00

T 2

.Li

0 .

40=

00

v0 Cd 0
0 2E A

0 ~ *119



Extension of Methodologies to other Neural Networks

Based on the principles presented in the previous sections, table 5-3

provides a comparison of the four methodologies for several neural network

paradigms. The table compares the ease of implementation and expected per-

formanace of a number of popular neural network paradigms. This table is not

meant to be an exhaustive list of neural networks, but rather an indicator of the

best methodology for the implementation of several specific networks.

Summary

Four methodologies were developed for the implementation of neural

networks on multiprocessor systems. The Layer and Cross-layer methods use

the network's topology as the basis for parallel decompositions. While these ap-

proaches provide an easy method for exploiting parallelism, the communication

overhead is a harder task to solve. The Cross-layer method appears to mini-

mize the communication overhead, but at the expense of extra synchronization

code.

The two other methodologies were based on the block level parallelism

exhibited by network algorithms. The Pipeline method is generic enough that

it can be applied to any network paradigm. The limiting factor in this

methodology however, is the amount of parallelism that can be found in any

particular network paradigm. As such, network decompositions using this

method are more labor intensive then the first two methodologies.

120



Ug
0 0 

l~.

& ~a ~a
.~ .~

6 

2:1

~
E~ 

~u 2
*5~c 

.~

-- 
-- 

0

U

8 
z

U

I-

U -~ 
~a a I-

U
*~ .~

rd2'~
~ 

~

0

~ 
Eu- ~ >0 ~a

u u

U

2

6 

0 U

-
U

*~&~ ~

~ ~ 

U
0

2 ~ 
E~

U0

>-~ 
-~

u
U

*0

& 
~a .. ~

41 
~o ~NU

UWU ~'UU 
u

~ 
u~~u~ ~

~o >~i~ ~

C

-
C

U 
CIE

CI CL N

121



The Hybrid Epoch-Pattern methodology was developed specifically for

error-correcting algorithms. It exploits weaknesses found in epoch and pattern

training methods when training on large data sets. This methodology assigns

one or more processors per data set, enabling the system to execute several

data sets concurrently, in an asynchronous manner.

122



Chapter VI

Applications

Introduction

This chapter examines the application of the four methodologies

presented in chapter V to two neural network simulation routines on a coarse

grain multiprocessor system. In the sections that follow I will: describe the

software and hardware testbed used to examine methodology performance,

detail the techniques used to apply these methodologies, and analyze the perfor-

mance obtained from several network simulations.

Applications Testbed

Table 6-1 lists the hardware and software assembled to test the perfor-

mance of the methodologies. A Masscomp model 5700 with dual processors

was chosen as the multiprocessor system on which to test the methodologies.

This UNIX-based, bus oriented system was described in detail in chapter three.

This particular system was chosen for three reasons. Firstly, it is repre-

sentative of most bus oriented multiprocessors with their cache memories, and

123



EQUIPMENT:

- HARDWARE Masscomp 5700 computer system with two 68020
microprocessors (expandable to eight)

- HOST SYSTEM AITT Sys V UNIX Operating System
SOFTWARE Masscomp C compiler

TEST SOFTWARE

- McClelland & Ruelhart PDP Backprogpagation Simulator

-Becker Screen Driven Menu Oriented Neural Network
Simulator (developed at UMBA Medical School
Div of Medical Informatics)TEST NETWORKS:

- 33 different networks ranging from five nodes with six connections to
three hundred nodes with twenty thousand connections

Table 6-1
Methodologies Testbed

local and global memory capabilities. Secondly, its' hardware features were

adequate for a proof-of-concept of the methodologies to be tested. And third-

ly, I had exclusive access to one such system that was previously purchased with

funds from an Air Force grant.

Two neural network software simulators were chosen for implementa-

tion on the multiprocessor to test the methodologies. The first simulator

chosen was McClelland and Rumelhart's Parallel Distributed Processing (PDP)

backpropagation network simulator. It was selected due to its availability, and

124



the fact that the source code was provided with the simulator. The second

simulator chosen was a screen driven, menu oriented (SDMO) neural network

simulator developed at the University of Maryland, School of Medicine, Medi-

cal Informatics Division. It was selected because of the availability of its'

source code, ease of learning, and the fact that it also included a backpropaga-

tion paradigm.

Both simulators allow the user to define the following neural network

parameters:

o Number of layers

o Number of nodes per layer

0 Initial weights and biases

o Activation threshold

o Learning rate

o Momentum

o Number of training iterations

o Number of patterns in training set

o Minimum acceptable pattern error

While the screen driven simulator only allows fully connected networks,

the PDP version allows the user to specify the connections between nodes.

The fact that both simulators utilize the backpropagation algorithm was

not coincidental. I wanted to implement this particular paradigm on a multi-

125



processor system for several reasons. One reason was that this paradigm is

used, in one form or another, in approximately 80% of all ongoing neural net-

work research and development [Jackel 89]. As such, the successful implemen-

tation of the backpropagation paradigm with these methodologies might prove

of immediate R&D benefit. A second reason was that the availability of two dif-

ferent implementations of the same paradigm would allow me to see if there

were any performance differences based on how the same algorithm is written

by different people. That is, one backpropagation algorithm might work well

on all the methodologies, but a second algorithm, written in a different manner,

might not work as well.

Appendix 1 lists the thirty-three neural networks used to test the im-

plementations of the two simulators with the various methodologies. The net-

works ranged in size from five nodes with six connections to three hundred

nodes with twenty thousand connections.

The networks were trained on different training sets depending on the

number of input and output nodes in each network. In those networks with an

equal number of input and output nodes, two training sets were used. In the

first training set, the networks were trained to respond with a right circular shift

of the input vector. For example, if the input vector was 01010, the correct

response was 00101. In the second training set, the networks were trained to

respond with a double right circular shift of the input vector (e.g. 01010 to

10010).

126



In networks where the number of input and output nodes differed, the

networks were trained on random input to output groupings. For example, if

the input vector was 01001, the correct output vector was randomly selected to

be 0011000100 for a ten node output layer.

The number of patterns in each of the training sets ranged from four pat-

terns up to twenty patterns, depending on the size of the networks. For ex-

ample, a network with four input and output nodes might have ten different

right circular shift patterns in it's training set.

Experimental Design

Both of the simulators were implemented using each of the four

developed methodologies, for a total of eight multiprocessor implementations.

To compare single and multiprocessor performance, the unaltered, original ver-

sion of a simulator was first run on a single Masscomp processor followed by a

run of the modified version of the simulator (for a single methodology) on both

processors. This process was repeated for each simulator until all four

methodologies had been implemented.

The single and parallel versions of the simulators both used the same

training sets, under the same initial conditions (i.e. weights, biases, etc.). Im-

mediately after the single processor version converged to a solution for a train-

ing set, the parallel version was executed for the same training set. This process

127



was repeated at least three times, with the averaged results used in the analysis

of performance.

Because the weights can converge to different values and still result in

the same correct answers, the performance data was only considered valid if

both the single and parallel versions converged to the same set of weights. In

networks with a small number of connections, all the weights were compared.

In larger networks however, convergence to the same solution was checked by

randomly sampling 500 weights in various layers of both versions, and compar-

ing them with one another.

Modification Criteria

One of the major objectives of this dissertation was to take existing

neural network simulators developed for sequential computer systems and im-

plement them on multiprocessor systems. In doing so, I had two major

modification criteria that governed how the methodologies would implement

the network simulators. The first criteria was that only minimal changes to the

existing code would be allowed. My intent was not to rewrite the entire simula-

tion programs, but to adapt them with the least amount of changes. The second

criteria was that no modifications were allowed that would change the original

"intent" of the network's learning and activation rules. This was of major impor-

tance because I did not want the sequential and parallel versions to differ in

any way except speed of execution.

128



Precursors to Implementation

Before implementing the simulators using the four methodologies, I had

to develop the code necessary to handle the metrics, decomposition between

processors, shared memory, and synchronization. This section briefly describes

the various codes.

Metrics

A C program called stats was developed to obtain the necessary metrics

for measuring how well each methodology performed. A complete listing of

the program is given in Appendix 2. The program enables the user to embed a

stats call anywhere in the simulation program to see how well the program is

performing. Calls can be placed after every iteration or every epoch to get a

detailed analysis of methodology performance. Some of the parameters

measured by the program are:

o Elapsed user time

o Elapsed system time

o Shared memory size

o Number of Page faults

o Number of voluntary switches

o Number of involuntary switches

129



Network Decomposition

To examine the potential parallelism of the simulations for the Pipeline

and Hybrid methodologies, the UNIX profile command was utilized. Figu-%. 6-

1 shows an example of the output from the profile command. In this particular

example, the profile shows the results of 500 iterations of the PDP simulator

running an Exclusive OR network. Note that the majority of the time was

spent executing the change-weights, computeerror, compute-output and com-

pute wed functions. These four functions would therefore be the prime can-

didates for parallel execution.

%time cumsec #call ms/call name
32.5 5.53 500 11.07 -change-weights
18.2 8.63 500 6.20 computeerror
17.0 11.53 500 5.80 _compute-output
15.2 14.12 500 5.17 -computewed
4.0 14.81 10000 0.07 -logistic
3.2 15.34 _exp
2.1 15.69 _doprnt
0.9 15.84 500 0.30 settarget
0.8 15.98 500 0.28 sumstats
0.7 16.10 display float
0.5 16.18 write
0.4 16.25 500 0.13 setinput

Figure 6-1
Sample Output from Profile Command

To handle the assignment of the concurrent blocks of code to the

various processors, several sections of code were written. One section of code

130



was used to create a child process. A second section would then specify which

processor the child process would use to execute its' code. To better under-

stand U process, I will continue with the example started in figure 6-1.

The order of execution for the four functions cited above are:

0 computeoutput

a compute_error

0 computewed

o changeweights

Assume that compute output and compute wed are to be placed on one

processor and compute_error and changeweights are to be put on a second

processor. Figure 6-2 illustrates how this can be accomplished. Within the

function traino, the function trial() is called. The first time trail is called, it

forks, creating a child process. Because the child process has a process id of 0

(i.e.pid = =0) it executes the if-then clause. In the clause, the system is in-

structed to use processor two to execute compute_error and changeweights.

While the child process is doing this, the parent process continues executing

the instructions in traino; compute output and compute-wed. Through the

use of synchronization flags (to be explained below), the child process keeps

looping and executing the same section of code until the parent process termi

nates the child.

131



train()
for(t = 0; tnepochs; t ++)

read patternso;
if(!forkflag)

trial();
compute -outputo;
sumstatsO;
compute-wedO;
parentflag = 1;
if( error ecrit) break;

}/* end of t '

(a) PARENT PROCESS

trial(){
if(!forkflag){

forkflag = 1;
pid = forko;

} I end of if *f
if(pid = = f

function = mpadvise(MPA CPU SET, 4);
forkagain:

compute -effro;
change..weightso;

while(!parentflag)
parentflag = 0;
goto forkagain;

}P end of pid eq 0 '
}/. end of trial ~

(b) CHILD PROCESS

Figr 6'2
Sample C code for Parent and Child Process

132



Synchronization

To handle the synchronization of the various blocks of parallel code, a

simple system of flags is utilized. Figure 6-2 illustrates the use of the flags.

After compute wed on processor one is finished, it sets the flag, parentflag to 1.

This allows processor two to continue, after completing change weights. Note

that if processor two does finish before processor one, it simply loops in the

while statement until processor one does finish. Afterwards, it resets parentflag

to 0 and continues. The purpose of this particular flag was to assure that both

processors were operating on the same data set. As such, it was being utilized

as a means to resynchronize the processors in the event they fall out of synch.

Shared Memory

To enable the processors to share the variables needed by the parallel

blocks of code, and to know the status of each flag, shared memory is required.

Figure 6-3 illustrates a section of code where shared memory is defined and as-

signed. In the code, a section of memory called "lumped" is defined. The two

system calls, "shmget" and "shmat", get a specified size of memory allocated for

shared memory usage, then, attach the memory to any processors knowing the

proper id name of the memory ("lumpid" in this case). After being assigned,

the variables that need to be shared between processors can be assigned

specific addresses in shared memory. This is shown in the figure for the vari-

able arrays "delta" and "error". It should be noted that the commented out sec-

133



tions in the figure are the original code that defined and assigned memory to

the delta and error arrays.

Layer Method Results and Analysis

Figure 6-4 illustrates a typical decomposition and timing diagram for a

four pattern epoch implementation of the Layer method. The networks were

decomposed as evenly as possible between the two processors. In cases where

there were an odd number of layers, as shown in the figure, processor one was

assigned the extra layer. This type of arrangement did not create much of a

load imbalance however, because the input layer's only function is to distribute

the weighted input vectors to each of the nodes in layer one. This imbalance

appears in the figure as an idle period for processor two. What little load im-

balance that is present is further reduced in networks where there ale a larger

number of layers.

As indicated in the figure, the data sets are "piped" from one processor

to another. Thus, while processor one is computing data set i+ 1, processor

two is computing data set i. Also note, that all the weight adjustments are hand-

led by processor one.

The results of the PDP simulator are shown in figures 6-5 and 6-6. As

shown, the Layer methodology never achieved any significant amount of

speedup for any of the test networks. Analysis of various execution times indi-

134



/* activation, bias, target, error, delta arrays lumped here in shared memory I

ermo = 0; /* create shared memory of proper size */
lumpsize = (unsigned)(sizeof(float)*(4*nunits + noutputs));
/* get the shared memory allocated */

lumpid = shmget(0, lumpsize, 06661 IPC CREAT);

if (errno > 0)
fprintf(stderr, "errno is %3d, which means %s\n",
errno, sys errlist[errno]);

printf("lumpid is %10d\n", lumpid);
ermo = 0;

lumppage = calc_page(lumpsize);

/* attach the shared memory space to process '/

lumped = (float *) shmat(lumpid, lumpage, 0);
if (errno > 0)

fprintf(stderr," %s\n", syserrlist[ermo]);

for (i = 0; i*nunits + noutputs; i + +)
lumped[i] = 0.0;

errno = 0;

/P attach arrays to shared memory addresses S/

delta = &lumped[nunits];
/*delta = (float*) emalloc((unsigned)(sizeof(float)*nunits)); '/
(void) install var("delta", Vfloat,(int *) delta, nunits, 0, SETVMENU);
error = &lumped[2*nunits];
/*error = (float*) emalloc((unsigned)(sizeof(float)*nunits)); ./
(void) install var("error", Vfloat,(int *) error, nunits, 0, SETVMENU);

Figure 6-3
Shared Memory Allocation Code

135
4.0'



4-4

00
C-4)

C14 -- )

CC.

136)



4.)

.2 1.2

"-"1.1
iS

o0

16 100 200 300 400 500 600 700 800 900

# of connections

Figure 6-5
Speedup of PDP implementation of Layer Method for four patterns per epoch

1.3

1 1.2 -

C- -" 1.1
CL

-o7

100 200 300 400 500 600 700 800 900

# of connections

Figure 6-6
Speedup of PDP implementation of Layer Method for twenty patterns per epoch

137



Function time to execute for

entire network (msec)

read input/output vectors 0.1

Compute output 11.6
compute Logistic 0.2

compute error 12.4

Backprogagtion of errors 10.3
Adjust weights 22.1

Total 56.7

Table 6-2
Sequential verson Execution times for 103 network (single pattern)

Function execution time (msec)

Processor 1 time for Table 6-1 functions 45.4
Processor 2 time for above functions minus weight adjusts 16.0
Total 61.4

Table 6-3
Layer Methold execution time for 103 network (single pattern)

cated why this was true. Execution times for the major functions that perform

the training and learning algorithms for the sequential version of the PDP

simulator are shown in table 6-2 for a network with 200 connections (103 net-

work). These times are for i single pattern. Totalling up all the execution

times except for the weight adjustments, results in 34.6 msecs.

138



Table 6-3 shows the execution times for a single pattern on the 103 net-

work using the Layer method. Assuming the weight calculations for the sequen-

tial and layer methods are approximately the same, then processor one's execu-

tion time (excluding weight adjustments) is approximately 23.3 msecs. This, plus

the time it takes processor two to do its calculations, results in a total execution

time of 39.3 msec for the Layer method, which is approximately 5 msec slower

than the sequential version.

If the Layer method was used with pattern training, longer execution

times would result than if the network trained in a single processor. This is

shown graphically in Figure 6-7. Parallel execution would take 61.4 msec per

pattern whereas, sequential execution would only take 56.7 msec. Extrapolat-

ing this out for four patterns per epoch and twenty patterns per epoch would

results in the numbers shown in figure 6-8. Thus, the speedup for a four pat-

tern epoch on two processors would be:

160.5
131.2 1.22

For a twenty pattern epoch, the speedup would be:

714.1
504.1

This example clearly shows how the number of processors and the num-

ber of patterns per epoch affect the speedup for parallel implementations using

the Layer method. Comparing the above example with the results obtained in

139



Processor 2 16.0 msec

Processor 1 23.3 msec 22.1 msec (a) parallel

I 61.4 mnsec "

34.6 msec j 22.1 msec (b) single processor

5 7---5 . msec -',I

Figure 6-7
Processing times for one pattern on single and multiple processors

figures 6-5 and 6-6, and taking communication overhead into account, the

speedups are in fair agreement with one another; 1.22 estimated, versus 1.12 ac-

tual for four patterns, and 1.41 estimated, versus 1.23 actual for twenty patterns.

From this analysis and the results shown, it is apparent that the Layer

method is limited for several reasons. As pointed out above, one of its limita-

tions is its dependance on the number of patterns per epoch. The only way to

achieve a significant speedup is to have a large number of patterns to train on,

and to train them on an epoch basis. Another limitation is that the amount

140



1 1 21131141 idle

L1 2 3 4 adjustwgts . * * (a) four pattern Layer

--" 23.3 x 4 + 16.0 +22.1
131.2 msec

I11021- .01(b) twenty pattern

II• I 0 adjust wgts Layer

I 23.3 x 20 + 16.0 + 22.1

504.1 msec

2 3 1 4 adjust wgts " (c) four pattern

I 34.6x 4+222.1 
sequenial

160.5 msec

I1 1 I o20 adjust wgts (d) twenty pattern

I34.6 x 20 + 22.1 sequential

714.1 msec

Figure 6-8
Processing times for four and twenty pattern epochs on single and multiple

processors

le" 141



of concurrency that can be realized with this method also depends on the num-

ber of processors available. Just as more patterns builds concurrency with this

method, so do more processors. However, as indicated in figures 6-7 and 6-8,

the amount of concurrency that can be realized with this method does not ap-

pear to be cost effective when one considers the extra coding involved and

communication overhead. For these reasons, we felt that no further tests of

this method were warranted on the PDP simulator, and that no tests need be

conducted with the SDMO simulator.

Cross-layer Method Results and Analysis

The first test network I attempted using this method was the 424 net-

work. This network has four input nodes, two hidden layer nodes, and four out-

put nodes. The network was decomposed such that each processor was as-

signed exactly half of the not,. when a vertical slice was taken. In spite of the

fact that substantial code changes were required to do this, I attempted to ex-

ecute the 424 network with this methodology.

Unfortunately, this methodology was never successfully implemented

due to problems with processor synchronization between layers. While it was

possible to eventually synchronize the processors such that one processor would

begin computing the inputs to a node after receiving all the data from the other

processor, actual concurrent operation of the processors was minimal. Figure 6-

9 better illustrates the problem.

142



Input

Processor I Processor 2

process node I process node 3
process node 2 prcs node 4

Figure 6-9
424 Cross Layer Decomposition

143



To avoid contention for the bus, processor one begins its execution

slightly before processor two. This allows the results of nodes one and two to

be presented to node six before nodes three and four do the same for node

five. Unfortunately, before node five can begin computations, it needs the infor-

mation from nodes three and four, which are purposely being delayed. Thus,

node five's operation must be synched with the outputs of nodes three and

four, to keep the results valid. It is this synchronization that causes most of the

concurrency to be lost.

I attempted to let both processors start execution at the same time and

let the operating system handle the contention for the bus. This was not suc-

cessful either because the same overall effect occurred. Either node five was

waiting for outputs from nodes three and four, or node six was waiting for out-

puts from nodes one and two.

Had the synchronization problem been solved, it was doubtful that any

significant speedup would have been achieved. The main reason being, the

overhead in terms of the coding required to make the vertical slices and to

synchronize the processors was very high. Thus, it was doubtful that this over-

head could have been offset by any gains in parallel execution.

Pipeline Method Results and Analysis

The decomposition and timing diagrams for the PDP and SDMO

simulators are shown in figures 6-10 and 6-11. The diagrams illustrate how the

144



Processor I Processor 2

Read pattern i

Compute Output

Compute stats Compute error

Compute delta error

Wait Adjust Weights

Read pattern i+1

Figure 6-10
PDP Decomposition and timing diagram for Pipeline Method

145



Processor 1 Processor 2

Read pattern i

Process Network

pattern i set error output layer
Screen updates Compute error

Read pattern i+ 1

Adjust bperror compute delbias

Process network Idle

Pattern i+ 1 set error ouput laver

Fiure 6-11
SMDO Decomposition and timing diagram for Pipeline Method

146



major functions of each simulator were decomposed, and the synchronization

that was required. To better understand how this method was implemented, the

SDMO simulator figure will be explained in detail.

There are seven functional blocks in the SDMO simulator that can be

split up between the two available processors for parallel execution. Four of

the blocks are assigned to processor one, while the other three are assigned to

processor two. Processor one starts by reading in a pattern then immediately

computing the resulting activation levels for each node.

As processor one begins these computations for the output layer, proces-

sor two, which has been idle up to this time, can begin setting the error array

for the output nodes to zero (this must be done for every pattern). Immediate-

ly after this, processor two can begin to check the resulting error for the pattern

and backpropagating the error to the other layers. While processor two is doing

this, processor one begins updating information on the screen and reading in

the next input pattern. By the time it finishes this, processor one can then

begin adjusting the weights, starting at the output layer and working towards

the input layer.

Even though processor two has not completed the error backpropaga-

tion, weight adjustment is possible, because the error propagation also starts at

the output layer and works towards the input layer. Thus, by the time the

weight adjustments start, the error for that layer has already been completed.

While processor one is finishing the weight adjustments, processor two can then

147



make the necessary bias changes (delbias). Since the bias and weight adjust-

ments are completely independent, no synchronization is required for these two

functions.

The complete, modified source code for the PDP and SDM simulators

for the Pipeline methodology are given in appendixes 3 and 4 respectively.

The results of the implementation of these simulators using the Pipeline

method are given in figures 6-12 and 6-13. As shown in the figures the PDP im-

plementation exhibited and average speedup of 1.67 and the SDM, an average

speedup of 1.61. The average efficiencies of these implementations were:

speedup 1.67
N 2=83% PDP

1.611 80% SDMO2

It should be pointed out that, due to the memory allocation scheme used

in the SDMO simulator, and the operating system limitations placed on shared

memory, only networks with up to 3200 connections could be simulated on the

Masscomp with the SDMO simulator. While the operating system limits could

have been increased to allow up to 10,000 connections for the SDMO

simulator, a new system configuration file would have been required, and the

operating system reconfigured. For these reasons, it was decided to limit the

SDMO simulator to 3,200 connections.

It was interesting to note that the two simulators produced about the

same average speedups. While doing the network decompositions, it was ap-

148



* 0

* 0

00

Q~puonb~/jojjw.d __~d

149



00

0-

0.

00

en*

Qrpanbs /211md)dnp~*

150



parent that the PDP code was more effecient than the SDMO code. We

believed that thcse differences would reflect in the speedup that each simulator

could achieve.

The PDP code was very succinct and well written. Nodes were num-

bered from 1 to N, where N was the total number of nodes in the network.

This meant that only a single DO loop was required to perform a lot of the cal-

culations. The SDMO simulator, on the other hand, was not as effecient. The

nodes were numbered from 0 to 1-1, where 1 is the number of nodes in a par-

ticular layer. Thus, in multilayer networks, one had to know the layer number

as well as the node number to uniquely identify a particular node. This also

meant, that instead of one DO loop for a calculation, several DO loops were

required, depending on the number of layers in the network.

In spite of these differences, both simulators produced similar speedups.

Based on these results, it appears as though speedup is more a function of how

well an algorithm is decomposed into parallel blocks and not how well the algo-

rithm is coded.

The "peaking" of the speedup shown in figures 6-12 and 6-13 was due to

two factors. In networks with a small number of connections, speedup was in-

hibited because the staggering of the start times between processors was op-

timized for larger networks. For example, in the back propagation of errors

and the adjustment of weight functions, the weight adjustments were not al-

lowed to start until at least ten nodes had their errors calculated. In small net-

151



works, with say twenty nodes, this meant that weight adjustments could not

start until half of all the error corrections were made. In the larger networks

however, this provided enough "buffer" that the weight adjustments would not

"overtake" the backpropagation of errors, causing erroneous weight adjustments.

At the other end of the scale, where there were a large number of con-

nections, the performance declined due to communication overhead. This was

mainly due to the sheer volume of data that was being written into and read out

of shared memory by each processor. Consider figure 6-14 as an example of

what happens as the number of connections grows. In networks with a small

number of connections, all the shared data can be read into and written out of

shared memory in a few cycles. The time between when the data is written in

and when it required is such that there is some idle time. This idle time is

determined by the staggering of the functions on the different processors. As

the number of connections grow, the idle time is decreased because it takes

more time to accomplish the shared memory read and writes of all the required

data. Eventually, as shown in figure 6-14b, the size of the network has grown to

a point where there is no idle time left. Further increases in network size, then

cause contention for the bus, thus performance begins to suffer (figure 6-14c).

152



Processor 1 Processor 2

write to shared memory bus
idle

read shared memory

(a) small network with memory read and write accomplished
within processor stagger.

Processor 1 Processor 2
write to shared memory

read shared memory ]

(b) Network size increased to the point where there is no idle bus
time between processor I's write and processor 2's reading
of that data.

Processor 1 Processor 2

[ write to shared memory

I read shared memory

(c) Further increase in network size causes read from processor 2
to overlap with write from processor 1.

Figure 6-14
Network size's impact on centention of shared bus for memory reads and writes

153



Hybrid Epoch-Pattern Method Results and Analysis

The decomposition and timing diagrams for the PDP and SDMO

simulators are shown in figures 6-15 and 6-16 respectively. These figures il-

lustrate how pseudo epoch of two patterns, in a four pattern training set were

implemented. Each processor does all the computations for its own patterns

and runs asynchronously until weight adjustments are required. As shown,

processor one performs the weight adjustments while processor two reads in

the next two patterns, then waits for processor one to finish.

Notice in both figures, that the patterns are read by only one processor.

This was not the original intent for this methodology; it was forced on by the

way the C programming language handles formatted files. In C, when scanning

formatted files, an internal pointer is used to index to the next value to be writ-

ten into, or read out of the file. Even if the formatted file is in shared memory,

each process with access to the file has its own copy of the internal pointer, that

is, the pointer cannot be shared. The reason for this is that the pointer is as-

sociated with a process id and not the file itself. This way multiple users can ac-

cess the same file, and do not have to worry about someone else moving their

internal index.

An alternative solution to this pattern reading problem could have been

to have each processor skip over patterns it does not need to process. This al-

ternative was rejected however, because the cyclic nature of the pattern group-

154



Processor I Processor 2

read pattern 1
compute output read pattern 2

pattern 1 - compute output

compute error pattern 2
pattern 1 compute error

compute delta error pattern 2
pattern 1 compute delta error

compute stats pattern 2

adjust weights idle

pattern 1
read pattern 3

comput output read pattern 4
pattern 3 compute output

pattern 4

Figure 6-15
PDP decomposition and timing diagram for Hybrid Epoch-pattern approach

155



Processor I Processor 2

read pattern I

process network read pattern 2

pattern 1 process network
pattern 2

set error output layer
pattern " set error outut layer

check error pattern I patter'n
check error pattern 2

compute delbias pattern 1

adjust bperror compute delbias pattern 2

pattern 1 idle
read pattern 3

read pattern 4
process network

pattrn 3process network
pattern 3 pattern 4

Figure 6-16
SDMO decomposition and timing diagram for Hybrid Epoch-pattern approach

156



ings (explained in chapter 5) would have required an excessive amount of code

to keep the processors reading the proper set of patterns.

The complete, modified source code for the PDP and SDMO simulator

implementations using the Hybrid method are given in appendixes 5 and 6

respectively.

The results of these implementations are shown in figures 6-17 through

6-24. The figures show the speedup for a pseudo epoch of two, for a four pat-

tern training set, and a pseudo epoch of five, for a ten pattern training set.

These pseudo epochs were compared against the implementation of the test

networks on a single processor using both the pattern training method and the

epoch training method.

As shown in the figures, an overall average speedup between the hybrid

method and the two classical training methods was 2.0. Considering com-

munication overhead and the execution times associated with the extra "paral-

lelizing" code, a speedup of 2 or better would seem impossible. However, three

conditions existed that made this possible.

Firstly, the weight adjustments and the reading of the patterns were per-

formed concurrently, which would allow for a small decrease in execution time.

Secondly, the weight adjustments were only performed every two patterns in

the four pattern training set, and every five patterns in the ten pattern training

set (as opposed to pattern training's four and ten weight adjustments respective-

ly). Thirdly, the hybrid method tended to converge to a solution in a slightly

157



3.0

2.0_0
Speedup

parallel/ 1.9_
sequential

I I I I II

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-17
PDP Speedup with Hybrid method for four patterns vs. Sequential Pattern

training

3.0_

2.0_
Speedup
parallell 1.9_

sequential

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-18
SDMO Speedup with Hybrid method for four patterns vs. Sequential Pattern

training

a 158



3.0-

2.0_
Speedup

parallel/ 1.9_
sequential

I I i I t

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-19
PDP Speedup with Hybrid method for ten patterns vs. Sequential Pattern

training

3.0_

2.0_
Speedup

parallel/ 1.9 _
sequential

I I "i III

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-20
SDMG Speedup with Hybrid method for ten patterns vs. Sequential Pattern

training

159



3.0-

2.0_
Speedup

parallel/ 1.9_
sequential

I I I I I

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-21
PDP Speedup with Hybrid method for four patterns vs. Sequential Epoch training

3.0_

Speedup 2.0-.4

parallel/ 1.9_
sequential

I I I I I

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-22
SDMO Speedup with Hybrid method for four patterns vs. Sequential Epoch

training

160



3.0

2.0_
Speedup

parallel/ 1.9 _

sequential

I I I I I

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-23
PDP Speedup with Hybrid method for ten patterns vs. Sequential Epoch training

3.0_

2.0_
Speedup

parallel/ 1.9_
sequential

I I I I II

400 700 1k 1.5k 2k 3k

# of connections

Figure 6-24
SDMO Speedup with Hybrid method for ten patterns vs. Sequential Epoch

training

161



smaller number of cycles than the epoch method (differences were typically ten

or less).

Thus, when compared to pattern training, the time gained by performing

less weight adjustments and the parallel operations, offset the overhead in-

curred by executing the network on multiple processors. When compared to

epoch training, near perfect speedups were possible because of the parallel

operations and the slightly smaller number of cycles to convergence.

The number of data points collected for this methodology is somewhat

smaller than those collected in the Pipeline method. The reason for this was

because of the difficultly in getting all three training methods (i.e. single proces-

sor pattern and epoch methods and multiprocessor hybrid method) to converge

to the exact same solution. In all cases, the resulting solutions were correct but

they were not always the same solutions for all three methods.

The reason for the different solutions was two fold. First, there are multi-

ple sets of correct weights that will process all the patterns properly. Slight

variances in where the network falls on the error surface could therefore cause

different solutions to be sought out. Secondly, each training method adjusts the

weights after a different number of patterns. Thus, they might be in different

places on the error surface after going through the same number of patterns,

and could therefore head towards different minima solutions.

To help "coax" the training methods towards the same solution, I

"biased" the weights. Normally, the weights are initially randomized between -1

162



and 1, with each training method getting the exact same randomized weights.

To bias the weights, I ran one training method (usually the pattern method) for

fifty to one hundred epochs, then used the resulting weights as our initial set of

weights for all three methods. In doing this, the network was hopefully far

enough along the error surface that only a single solution would be sought,

regardless of the training method. While this procedure was fairly successful, it

significantly increased the amount of time it took to collect the data.

Summary

The four methodologies developed in chapter V were applied to two

neural network simulators and executed on a coarse grain, bus oriented, multi-

processor computer system.

The Layer method showed a very small amount of speedup. This was

primarily attributed to the concurrency limitations imposed by the number of

patterns in the networks' training sets and the number of processors utilized.

The Cross-layer method was never successfully implemented. While the fun-

damental concepts behind the methodology were sound, the synchronization be-

tween the processors could not be satisfactorily solved.

The Pipeline method resulted in an average speedup of 1.67, which cor-

responds to a 40% reduction in execution time over a single processor system.

The simulators were successfully decomposed into functional blocks that could

163



be executed concurrently. Through the use of this technique and the staggering

of dependant blocks, the resulting speedups were achievable.

The Hybrid Epoch-Pattern method was also successful with an average

speed up of 2, which corresponds to a doubling of the processing speed. This

method also showed that training on pseudo epochs is a viable alternative to

the classic pattern and epoch training methods.

164



Chapter VII

Conclusions and Recommendations

General Conclusions

Neural network research and development has seen a resurgence over

the past five years. Most of this research is being aided by the use of software

simulations of neural networks being run on single processor computer systems.

Unfortunately, these simulations are often extremely slow because of the sheer

size of the networks and the large number of computations. As such, re-

searchers are often limited in the size of the network that can be practically

simulated.

While the eventual implementation of neural networks in hardware will

help alleviate some of these problems, such implementations are neither affor-

dable nor practical at this time. Besides, hardware implementations require

their own extensive network simulations and validation of design before com-

mitting the network to a chip.

165



With this in mind, the primary goal of this dissertation was to lay the

foundation for the implementation of neural network technology on multi-

processor systems to increase network simulation speeds and size capabilities.

To attain this goal, I started by discussing the interrelationship of neural

network topology, with network learning and training in Chapter II. I then

detailed various multiprocessor architectures and their characteristic features in

Chapter III.

In Chapter IV, a conceptual framework was presented based on the con-

cepts of program decomposition, load balancing, communication overhead, and

process synchronization. A set of metrics was also introduced to enable us to

measure performance enhancements of multiprocessor implementations, and to

analyze the effects of load balancing, communication overhead and synchroniza-

tion.

In Chapter V, I developed four methodologies for the implementation

of neural network simulators on multiprocessor systems: the Layer, Cross-

layer, Pipeline, and Hybrid Epoch-Pattern methods. The first two

methodologies were based on the topological aspects of neural networks,

whereas the second two were based on their functional aspects.

The practical application of these methods were demonstrated in Chap-

ter VI, where two neural network simulators were implemented on a multi-

processor system using these four methods. I demonstrated the implementa-

tion of networks ranging from six to twenty thousand connections that resulted

166



in speedups averaging 1.66 and 2.0 for the Pipeline and Hybrid method respec-

tively. These results proved that these techniques and their generalities enable

the efficient multiprocessor implementation of highly complex massive neural

networks with acceptable execution times.

Recommendations

With the primary objectives of this dissertation fulfilled, we can now ex-

amine some areas of future research this work has generated.

One of the natural follow-ons to this research is to build a C compiler to

automate the decomposition process. I envision this compiler being used as a

pre-processor, where several test patterns are presented to enable the com-

piler to identify all parallel blocks of code and shared memory variables. Once

this is accomplished, the compiler would recompile the program, making the

necessary processor and shared memory assignments. Work in this area has al-

ready been discussed with Wright State University for several Masters thesis

projects.

A second, similar area of research involves using compilers to seek out

any and all concurrency, whether it be at the block level or DO loop level. I

believe this would allow the maximum flexibility in the assignment of tasks to

the various processors and help optimize load balancing.

An area of research the Wright Research and Development Center

(WRDC) Advanced Information Processing and Technology Branch at Wright

167



Patterson AFB Ohio would like to begin, is the implementation of the Pipeline

method on several Adaptive Resonance Theory network simulators. They wish

to use a SUN Workstation as a host processor to thirty transpuicrs, to imple-

ment these networks. This would further expand the knowledge base on multi-

processor implementation techniques.

From the standpoint of direct applications, McDonrnel Douglas is very in-

terested in the Layer, Pipeline, and Hybrid methodologies. They are currently

working on developing several neural network simulators using the back-

propagation algorithm. Their ultimate goal is to design a hardware realizable

neural network for real time multispectral image fusion. They wish to use the

techniques and methods we have developed to aid in the research and develop-

ment phases of their backpropagation neural network simulations.

168



Appendix 1

Test Neural Networks

# of # of Layer # of
Name inputs outputs Total Arrangement connections
XOR 2 1 6 2/2/1 5
424 4 4 10 4/2/4 16
102 10 10 20 10/10 100
151 10 10 25 10/5/10 100
103 10 10 30 10/10/10 200
1881 10 10 36 10/8/8/10 224
104 10 10 40 10/../10 300
1151 10 10 35 10/15/10 300
2020 12 10 44 12/10/12/10 360
105 10 10 50 10/../10 400
121 10 10 40 10/20/10 400
106 10 10 60 10/../10 500
1551 10 10 50 10/15/15/10 525
131 10 10 50 10/30/10 600
2125 20 5 60 20/15/20/5 700
2211 20 10 60 20/20/10/10 700
1221 10 10 60 10/20/20/10 800
231 20 10 60 20/30/10 900
2212 20 20 75 20/20/15/20 1,000
2252 20 20 65 20/25/20 1,000
1331 10 10 80 10/30/30/10 1,500
242 20 20 80 20/40/20 1,600
13231 10 10 120 10/30/20/30/10 1,800
252 20 20 90 20/50/20 2,000
2422 20 20 100 20/40/20/20 2,000
1441 10 10 100 10/40/40/10 2,400
2441 20 10 110 20/40/40/10 2,800
2442 20 10 120 20/40/40/20 3,200
14441 10 10 140 10/40/../10 4,000
24442 20 20 160 20,/40/../20 4,800
5555 50 50 200 50/50/50/50 7,500
5105 5C 50 200 50/100/50 10,000
111 100 100 300 100/100/100 20,000

169



Appendix 2

C Source Code for Stats Program

#include <sys/resource.h>
#include <stdio.h>
#define RUSAGE SELF 0
#define RUSAGECHILDREN -1
struct rusage rbuff;

rstats (fp)
FILE *fp;

/ * begin rstats *
printf( "-------------- beginning of stats --------- \n \n' ;

getrusage (RUSAGESELF, &rbuff);
fprintf (fp,"user time used\t\t- %ld sec %ld usec\n",
rbuff.ru utime.tv sec, rbuff.ru utime.tv usec);
fprintf Tfp,"systiem time used\t', %ld sec- %ld usec\n",
rbuff.ru stime.tv sec, rbuff.ru stime.tv usec);
fprintf Tfp,"max set size in Kbytes \t- %d\n",
rbuff.ru maxrss);
fprintf (fp, "shared memory size\t- %d\n", rbuf f .ru ixrss);
fprintf (fp,"unshared data size\t- %d\n", rbuff.ru-idrss);
fprintf (fp,"shared stack size\t- %d\n", rbuff.ru Tisrss);
fprintf (fp,"page reclaims\t\t- %d\n", rbuff.ru minflt);
fprintf (fp,"page faults\t\t- %d\n", rbuff.ru_majfit);
fprintf (fp,"swaps\t\t\t- %d\n", rbuff.ru nswap);
fprintf (fp,"block inputs\t\t- %d\n", rbu-ff.ru -inbiock);
fprintf (fp,"block outputs\t\t- %d\n", rbuff.ru -oublock);
fprintf (fp,"voluntary switches\tm %d\n", rbuff.ru-nvcsw);
fprintf (fp,"involuntary switches\t- %d\n",
rbuff.ru nivcsw);

printf( "--------------- end of stats ----------------- \n \n");

) * end of rstats *

rtime (fp)
FILE *fp;
I /*begin rtime*/
getrusage (RUSAGE SELF, &rbuff);
fprintf (fp,"user time used\t\t- %ld sec %ld usec\n",
rbuff.ru-utime.tv-sec, rbuff.ru-utime.tv-usec);

fprintf (fp,"system time used\t- %ld sec %ld usec\n",
rbuff.ru-stime.tv-sec, rbuff.ru stime.tv-usec);

/ * end of rtime */

a 170



rtd(utime,stime)
double *utime,*stime;

( //* begin rtd */
getrusage (RUSAGE -SELF, &rbuff);
*utime - (rbuff.rii utime.tv sec) +
(rbuff.ru utime.tv usec)/((Uouble)1.Oe6);
*stime - (rbuff.ru-stime.tv sec) +
(rbuff.ru-stizne.tv-usec)/((double)1.Oe6);

I /* end of rtd *

double rtd to
( /* begin double *
getrusage (RUSAGE_-SELF, &rbuff);
return((rbuff.ru utime.tv sec) +
(rbuff.ru utime.tv usec)/1l.0e6
+ (rbuff.ru stim-~.tv sec) +
(rbuff.ru-s:. _.usec)/1.0e6);

) /* end of double */

rtl(utime -s,utime -u,stime-s,stime u)

long*utime-s,*utime-u,*stime-s,*stime u;

( /* begin rtl */
getrusage (RUSAGE_-SELF, &rbuff);
*utime -s - rbuff.ru -utime.tv-sec;
*utime-u - rbuff.ru-utime.tv-usec;
*stjme s - rbuff.ru stime.tv sec;
*stjme u - rbuff.rufstime.tv-usec;

/ * end of rtl *

171



Appendix 3

Modified PDP Source Code for Pipeline Method

GENERAL. C

/* This file is part of the PDP software package. Copyright 1987 by
James L. McClelland and David E. Rumelhart. Please refer to licensing
information in the file license.txt, which is in the same directory
with this source file and is included here by reference.*/

/* general.c
Some general functions for PPD-pc package.
First version implemented by Elliot Jaffe.
Date of last revision: 8-12-87/JLM.
Masscomp revisions: 30 Jan 89/ bob Bennington */

#include "general.h"
tinclude "command.h"
#include "variable.h"
#include <signal.h>

#ifdef MSDOS
#include <memory.h> /* for memcpy() in erealloc in general.c *I
#include <process.h> /* for system() in do-exec in command.c *1
#endif

FILE * in stream - stdin;
int Interrupt_flag = 0;
int singleflag = 0;
int step size;
int random-seed;
char step_string[STRINGLENGTH];
struct Command-table *Command;

extern int dump-template (;
extern int clear display (;
extern int update_display (;
extern int redisplay (;
extern int dc io ();
extern int do-network (;
extern int do system );
extern int do command (;
extern int do comfile (;
extern int do-exec (;
extern int seTlog (;
extern int run forko;
extern float *wds;
extern int wdsid;

172



extern int lumpid;
extern float *lumped;
extern int *misc;
extern int miscid;

extern float *dvts;
extern int dwtsid;
extern float *wtss;
extern int vtssid;
extern int fnvtid;
extern int *fnvt;
extern float *vds;
extern float **'wtved;
extern int vtvedid;

int-handler() [
int int-handler 0

(void) sigr.,~ J- NT, int-handler);
Interrupt_flag - 1;

#ifdef MSDOS
char *index(somestring, somechar)
char *somestring;
char somechar;
I

return strchr(somestring,somechar);

#endif

char *emalloc (n) /* check return from malloc *
unsigned n;

char *p,
*,alloc 0

p - malloc(n);
if (p == 0)
put_error("out of memory");

return p;

char *erealloc (ptr,oldsize,nevsize)
/* check return from realloc*/
char *ptr;
unsigned oldsize;
unsigned nevsize;

tifndef MSDOS
char *realloc 0
char *p;

173



p - realloc(ptrnevsize);
if (p .. 0)
put -error("out of memory");

return p;

#else (if MSDOS)

char *malloco;
char *p;

p = malloc(nevsize);
if (p .. 0)

put -error("out of memory");
if (ptr && p) (
memcpy(p, ptr, oldsize);
free(ptr);

return p;

tendif MSDOS

calc_page(size) tdded 7 apr 89 RVB *
int size /* o caic amount of space needed for *
I /* shared memory in increments of 4K pages *
mnt inc, pg, endof, xtra, nuend;
inc =1;

pg =4096;

endof = sbrk(0);
while (pg<= endof)(

pg = 4096 * inc;
++inc;

xtra =(pg - endof) + size;
nuend -sbrk(xtra);
return(pg);

startsame(sl, s2) /* does si start the same as s2? *
char *sl,

*s2;(
while (*sl && *s2)
if (*sl++ I. *s2++)

return(0);

if(*sl && !*s2) /* if si is longer than s2 it should fail *
return(0);

return(1);

174



char *strsave (s)
char *s;

char *p,
*emalloc 0

if ((p - emalloc((unsigned)(strlen(s) +1))) 1. NULL)
(void) strcpy(p, s);

return(p);

randint(lov, high)
mnt low,high; (

int answer;
float randf;
int range;

randf - rndo;
range - high - low + 1;
answer - randf * range + low;
return(answer);

quito
int r;
char *str;
str =get-cc. .("Quit program? -- type y to confirm: "1);

if (str && str[OJ .. 'y')(
end displayo;
/* added 7 apr 89 detaches shared *
/* memory and deallocates its storage- RUB *

shmdt(misc);
shmdt(lumped);

shmdt(fnwt);
shmdt(wtss);

shmdt(dwts);
shmdt(wds);
shmdt(wtved);

shmctl(fnwtid, IPC Rl4ID,O);
shmctl(miscid, iPC7RID,O);
shmctl(lumpid, IPC RMID,O);
shmctl(wtwedid, IPC RNID,O);
shmctl(dwtsid, IPC RNID,O);
shmctl(wtssid, IPC7RMID,O);
shmctl(wdsid, IPCRMID,O);

exit(O);

else
return(CONTINUE);

175



stats() / * this function clears the screen then
prints out */
clear displayo; /*the stats package. It also returns the curser *
io_* ove(5,0); /* back where it belongs so the command line will be *
io refresho; /* in the proper position -- 3lJan 89 bob bennington *
rstats(stdout);
io move (0,0);
io refresho;
return(CONTINUE);

set step()
char old_step_string[STRINGLENGTHJ;
struct Variable *vp, *lookup_varo;

strcpy(old-step-string,step-string);

vp - look~v_,dr("stepsize");
change-variable("stepsize" ,vp);

if (startsame(step string, "nepochs"))
strcpy(step_string,"nepochs");

else if (startsame(step-string,"epoch"))
strcpy(step_string, "epoch");

else if (startsame(step_string,"pattern"))
strcpy(step_string,"pattern");

else if (startsame(step-string,"ncycles"))
strcpy(step_string, "ncycles");

else if (startsame(step_string,"cycle"))
strcpy(step-string,"cycle");

else if (startsame(step_string,"update"))
strcpy(step-string,"update");

else if (startsame(step_string,"default"))
strcpy(step_string,Default_step string);

else (
strcpy(step_string,old_step_string);
return(put-error("urecognized stepsize -- size not changed."));

set stepsizeo;
return(CONTINJE);

set_stepsize()
if (strcmp(step string,"update") -- 0) step_size - UPDATE;
else if (strcmp~sten _string,"cycle") .. 0) step size - CYCLE;
else if (s trcmp (s tep_s tring, "ncycles") -- 0) step-size - NCYCLES;
else if (s trcmp(s tep_s tring, "pattern") -- 0) step-size - PATTERN;
else if (strcmp(step_string,"epoch") .. 0) step size - EPOCH;
else if (s trcmp(s tepst ring, "nepochs") .. 0) step_size a NEPOCHS;

176



init_general()

extern int int-handler 0
Interrupt_flag - 0;
strcpy(step_string,Default_step_,string);
set stepsizeo;
it commandso;
(void) signal(SIGINT, int -handler);
(void) install -command("?" , do-help, 0, 0);
(void) install-command("disp/", do-command, BASEHENU, (mnt

DISPLAYHENU);
(void) install -command("opt/", do-command, DISPLAYMENU, (nt *

DISPLAYOPTIONS);

(void) install-command("exam/", do-command, BASEKENU, (mnt
SETHENU);

(void) instail command("get/", do-command, BASEMENU, (mnt
GETMENU);

(void) install-command("save/", do-command, BASEMENU, (nt *
SAVEHENU);

(void) install-command("set/", do-command, BASEKENU, (mnt
SETHENU);

(void) install-command("config/", do command, SETMENU, (mnt
SETCONFMENU);

(void) install command("env/", do-command, SETMENU, (mnt
SETENVMENU);

(void) install-command("mode/", do-command, SETMENU, (mnt
SETMODEKENU);

(void) install-command("param/",do-command, SETMENU, (int
SETPARANHENU);

(void) install-comand("state/", do-command, SETMENU, (mnt
SETSVMENU);

(void) install command("clear", clear Idisplay, BASEMENU, 0);
(void) install command("do", do_comflle, BASEMENU, 0);
(void) installcommand("log", set log, BASEMENJ, 0);
(void) install command('quit", quit, BASEMENU, 0);
(void) install command("run", do-exec, BASEMENU, 0);
(void) install command("stats", stats, BASEMENU, 0); /* added 30

Jan89 by bob bennington *1
/* (void) install command("srand", random seed, BASEKENU, 0); *

(void) install command("state", redisplay, DISPLAYMENU, 0);
(void) install-var("seed", Int, (int *)&random-seed, 0,

0, SETPCMENU);
(void) install-var("single", Int, (mnt *)& single_flag, 0,

0, SETPCMENU);
(void) install-var("stepsize", String, (mnt *) step-string,0,

O,NOMENU);
(void) install-commandQ'stepsize",set_step,SETPCHENU,(int *

NULL);

177



#ifdef MSDOS
sleep(n_sec)
tnt nsec;
(

int i,j;
for (i = 0; i < (n sec); i++)

for (j 0 0; j 20000; J++);
)
#endif MSDOS

BP.C

/* file: bp.c

Do the actual work for the bp program.

First version implemented by Elliot Jaffe

Date of last revision: 8-12-87/JLM
PIPELINE VERSION 13 Masscomp revisions

*/

linclude "general.h"
tinclude "bp.h"
*include "variable.h"
tinclude "ve-; - i.h"
tinclude "patterns.h"
tinclude "command.h"

#define forkflag misc[O]
#define compoutiflag misc[l]
#define comperrorflagl misc[2]
#define comperrorflag2 misc[3]
#define compvedflagl misc[4]
#define parentflag misc[5]
#define doneflag misc[6]
#define patno misc[7]
#define compout2flag misc[8]
#define compwedflag2 misc[9]
#define pss lumped[6*nunits]
#define tss lumped[6*nunits +1]
#define momentum lumped[6*nunits +2]
/*#define lrate lumped[6*nunits +3]*/

char *Prompt = "bp: ";
char *Defaultstep string - "epoch";
char grainstring[20J = "pattern";
boolean System Defined = FALSE;
boolean iflag = 1;
boolean cascade = 0;
int epochno = 0;

l178



int cycleno - 0;
int nepochs - 500;
int neycles -50;
float ecrit -0.0;
float crate = .05;
float drate = .95;
float gcor = 0.0;
int follow = 0;
float *netinput = NULL;
float *activation = NULL;
float *error -NULL;
float *target = NULL;
float *delta - NULL;
float **dvejght - NULL;
float **pved = NULL;
float *dbias - NULL;
float *pbed - NULL;
float tmax = 1.0;
float mu - .5;
int tallflag = 0;

int *misc - NULL;
extern float *lumped;
extern float **vtved;
float *dvts - NULL;
flcat *vtss = NULL;
float *wds = NULL;

extern int read veightso;
extern int write-veightso;

int function, status, pid;
int miscid, miscpage;
unsigned miscsize;
mnt vtssid, wtsspage;
unsigned wtsssize;
mnt vdsid, vdspage;
unsigned wdssize;
int dvtsid,dvtspage;
unsigned dwtssize;
FILE *fopen(), *fp;

mnit_system() (
mnt strain (), ptrain 0,tall 0,test_pattern 0

reset veightso;
mnt get_unatneso, set lgraino, cycleo, newstarto;
mnt change_lrateo, change-crateo, set-follow-modeo;

epsilon-menu - SETCONFMENU;

mnit-veightso;

179



(void) install command("strain", strain, BASEKENUI,(int *)NULL);
(void) install command("~ptrainw, ptrain, BASEI4ENU,(int *)NULL);
(void) install command("tall", tall, BASEHENU,(int *) NULL);
(void) install-command("test", test_pattern, BASEKENU,(int *

NULL);
(void) install command("cycle", cycle, BASEHENU,(int *) NULL);
(void) ins-tall-command("lreset",reset-veights,BASEKENU,(int

*)NULL);
(void) install commnand ("news tart", news tart, BASEMENU, (mnt *)NULL);
(void) instafl coinmand("lunames", get-unames, GETKENU,(int *

NULL);
(void) install-command("lpatterns", get_pattern pairs,

GETKENU,(int *) NULL);
(void) install var("lflag", Int,(int *) & lflag, 0, 0, SETPCMENU);
(void) install7var("lgrain", String, (mnt *) grain string,0,

O,NOMENU);
(void) install-command("lgrain"l,set-lgrain,SETHODEHENU,(int *

NULL);
(void) install varQ'follov", Int, (mnt *) & follow,0, O,NOKENU);
(void) install-command("follov",set-follow-mode,SETHODEMENU, (it

NULL);
(void) install var("cascade", Int,(int *)& cascade, 0, 0,

SETMODEMENU);
(void) install var("nepochs", Int,(int *)& nepochs, 0, 0,

SETPCMENU);

(void) install-var("ncycles", Int,(int *)& ncycles, 0, 0,
SETPCMENU);

(void) install-var("epochno", Int,(int *)& epochno, 0, 0,
SETSVMENU);

1* (void) install-var("patno", Int,(int *)& patno, 0, 0,
SETSVHENU); */

(void) install-var("cycleno", Int,(int *)& cycleno, 0, 0,
SETSVMENJ);

mnit pattern_pairso;
/* (void) install var("lpss", Float,(int *)&pss, 0, 0, SETSVMENU);
(void) install var("tss", Ploat,(int *) & tss, 0, 0, SETSVMENU);*/
(void) install var("gcor", Float, (int *) & gcor, 0, 0, SETSVNENU);
/* (void) install var("momentum", Float,(int *

&momnentum,O,O, SETPARAI*IENU) ;*/
(void) install var("lu", Float,(int *) &mu,O,O,SETPARAMMENU);
(void) install-couimand(Q'lrate", change_lrate, SETPARAMMENU, (mnt

NULL);
(void) install-command("lcrate", change_crate, SETPARAMMENU, (mnt

NULL);
(void) install -var("lrate", Float,(int *)& lrate, 0, 0, NOMENU);
(void) install var("cerate", Float,(int *)& crate, 0, 0, NOMENU);
(void) install~var(Q'ecrit", Float,(int *)& ecrit, 0, 0,

SETPCMENU);

180



(void) install var("tmax", Float,(int *)&tmax, 0, 0,
SETPARAMMENU);

define system()
register int i,j, totnum;
register float *wj, *shvi, *shdwt;
register float *vt, *shvt, *vtend;
float *tmp;

if (!nunits)(
put -error("eannot init bp system, nunits not defined");
return(FALSE);

else
if (!noutputs)(

put -error("cannot init bp system, noutputs not defined");
return(FALSE);

else
if (!ninputs)(

put -error("cannot mnit bp system, ninputs not defined");
return(FALSE);

else
if (!(nunits && noutputs && ninputs))(

put : 7-iot run bp system, nunits not defined");
ret

netinput - &lumpedl5*nunits];
netinput = (float *) emalloc ((unsigned) (sizeof (float) * nunits));

(void) ins tall-var("netinput", Vfloat,(int *) netinput, nunits, 0,

SETSVKENU);
for (i = 0; i < nunits; i++)
netinputliJ - 0.0;

(void) install_var("pss", Float,(Int *)&lumped[6*nunitsl, 0, 0,
SET SVMENU);
ps5 0.0;

(void) install-var("tss", Float,(int *)&lumped[ 6*nuni ts + 11, 0,
0, SETSVMENU);
tss = 0.0;

(void) install Uvar("momentum", Float,(int *) &luuaped[6*nunits +
2],0,0,SETPARAMMENU);
momentum = 0.9;

/*(void) ins tall-var ("lrate", Float,(int *) &lumped[ 6*nuni ts + 3],

181



0, 0, NOHENU);
irate - .5*

/* activation, bias, target, error, delta arrays lumped here in shared

memory */
/* lumped[] defined in weights because of the order functions are
iitialized*/

activation liumped [01;
1* activation = (float *) emalloc((unsigned)(sizeof(float)*

nunits)); */
(void) install var("activation",Vfloat,(int

*)activation,nunits,0,SETSVMENU);
1*for (i -0; i < nunits; i++)

acti-ation[i] -= 0*

delta -&luniped[nunits];
/* delta - (float *) emalloc((unsigned)(sizeof(float) * nunits));*/
(void) install var("delta", Vfloat,(int *) delta, nunits, 0,
SETSVMENU);,

1* for (i1 0; i < nunits; i++)
deltaj 0.;*

error - &lumpedj2*nunitsj;
1*error = (float *) emalloc((unsigned)(sizeof (float) * nunits));*/
(void) install-var("lerror", Vfloat,(int *) error, nunits, 0,

SETSVMENU);
1* for 4i - 0; i < nunits; i++)
error[i] .0*

target - &lumped[7*nunitsj;
1*target =(float *) emalloc((unsigned)(sizeof(float)*

noutputs)) ;*/
(void) install-varQ'target", Vfloat,(int *) target, noutputs,

0, SETSVMENU);
1* for (i = 0; i < noutputs; i++)

targetfl - 00*

dweight - &vtwed[2*nunitsj;
1* dveight -((float **)

emalloc((unsigned)(sizeof(float *)*nunits))); *
(void) install var("dweight", PVweight,(int *) dweight, nunits,

nuni ts, SETSVMENU);
totnum = 0;
for(i =0; i<nunits; i++) /*get total number of inputs for

"" variable of */
totnum += num-weights_to[iJ; /* wed and weight arrays to

182



properly

size sh mem segment*/

/*dveight "s" array defined *

dwtssize - (unsigned)(sizeof(float) *(nunits + totnum));
dwtsid - shmget(0, dwtssize, 066611PCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys errlist[errnoj);
printf("'dwtsid is Zl0d\n', dwtsid);
errno - 0;
dvtspage .caic_page(dvtssize);

dvts -(float *) shmat(dwtsid, dwtspage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys-errlist[errxoj);
errno - 0;

for(i. - 0; i< (nunits +totnum); i++)
dwtsliJ a 0.0;

1* for (I - 0; i < nunits; i++)(
dweightfil - float *)

C isigned)(sizeof(float)*num weights-toji])));
for (- (; num -weights_toli]; J++)(

dweightjifj~j = 0.0;

dbias =&lumped[4*nunits];

1* dbias - (float *) emalloc((unsigned)(sizeof(float) *nunits));

(void) install-var("dbias", Vfloat,(int *) dbias,
nunit- SETSVMENU);

1*for (i - 0; i < nunits; i++'
dbias[iJ - 0.0; */

/* misc array for shine. flags *
errno - 0;

*iscsize - (unsigned)(sizeof(int) *15);
miscid - shmget(0, miscsize, O666IIPC-CREAT);

if (errno >0)

fprintf(stderr, "errno is %3d, which means Zs\n", errno,
sys -errlist [errnoJ);
printf("miscid Is Zl0d\n", miscid);
errno = 0;
miscpage - caic -page(iniscsize);

misc - (mnt *) shinat(miscid, miscpage, 0);
if (errno >0)

(void) install-var("patno", Int,(int *) & misc[7J, 0, 0,

183



SETSVMENU);

for (i - 0; i <12; i++)
misc[iJ . 0;

errno - 0;

/*weight 'Is" array defined first *

wtsssize - (unsigned)(sizeof(float) *(nunits + totnuui));
vtssid - shmget(0, wtsssize, 066611PCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys_errlistlerrnol);
printf("wtssid is Xl0d\n"I, wtssid);
errno - 0;
wtsspage - caic_page(vtsssize);

wtss - (float *) shmat(wtssid, wtsspage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys-errlistlerrno]);
errno - 0;

1* now ved Ns" array defined*/
wdssize = (unsigned)(sizeof(float) *(nunits + totnum));
wdsid - shmget(0, vdssize, 066611PC CREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys_errlist[errnoj);
printf("wdsid is %l0d\n", vdsid);
errno - 0;
vdspage -caic_page(vdssize);

wds = (float *) shmat(wdsid, wdspage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys_errlist[errno]);
errno =0;

/* now get contents of wed and weight "s" arrays and put them into
shemem wed and wts arrays *
shwt - &wtss[0];
shwi - &wds[0J;
for(i =0; i< nunits; i++)(

wt - veight[i];
wi - wedli];
wtend - wt + num -weights_tolil;
for(; wt < wtend;)

*shwt++ -= t+
*shwi++ - vi=

) /*end wt for*/
)/*end for*/

184



/* now attach proper addresses to wed, weight and dveight "r" arrays
to
access repsective "s" arrays*/
totnum =0;

for(i =0; i <nunits; i++)(
if(num_weights_tofu) 1.0)[

weight[iJ - &vtss[totnumJ;
wedlil &vdsltotnumj;

dweight[iJ - &dwts[totnum];

totnum +. num -weights_toli];
/ * end if *

) * end for */

SystemDefined - TRUE;
return(TRUE);

float logistic (x)
float x;

double exp 0

#ifdef MSDOS
/* we are conservative under msdos to avoid potential underf low

problems that r'.- ' arise from returning extremal values -- jlm *
if (x > 11.5-
return( .99999);
else
if (x < -11.5129)

return( .00001);
#else
/* .99999988 is very close to the largest single precis value

that is resolvably less than 1.0 -- jlm *
if (x > 16.0)

return( .99999988);
else
if (x < -16.0)

return( .00000012);
#endif

else
return(1.0 / (1.0 + (float) exp( (double) ((-1.0) x)))

mnit_output()
register mnt i,j;
register float *sender, *wt, *end;
float net;

/* initializes the network to asymptotic outputs given 0 input *
cycleno - 0;

185



for (i .ninputs; i < nunits; i++) (1* to this unit *
net -biaslij;
sender = &activationlfirst-weight_tolj;
wt = veightiji;
end = sender + num -weights to[i];
for (j = first -weight_to[i]; j < ninputs; j++)

sender++; wt++; /* step over input units to
initialize to all-zero input case *

for (; sender < end ; (*from this unit *
net += (*sender++) * (w+)

netinputli] net;
lumped[iJ = activationli] = (float) logistic(net);

if (step size < PATTERN)(
update -displayo;
if (single_flag)(

if (contin_test() .= BREAK) return (BREAK);

if (Interrupt)(
Interrupt_flag = 0;
update -displayo;
if (contin-test() .= BREAK) return (BREAK);

return(CONTINUE);

cycle()
register mnt i,cy;
register float *sender,*wt,*end;
float newinput;

for (cy = 0; cy < ncycles; cy++)(
cycleno++;
for (i = ninputs; i < nunits; i++) (/* to this unit *

newinput = biaslil;
sender = &activation[first weight toli]];
end =sender + nuui- weights_toli];
wt = eightlij;
for (;sender<end;) (1* from this unit *
newinput += (*sender++) * (w+)

I
netinputliJ = crate * newinput + drate *netinputli];
activationli] = (float) logistic(netinputjij);

if (step_size -= CYCLE)(
update displayo;
if (single_flag)(
if (contin-test()= BREAK) return (BREAK);

186



)
)
if (Interrupt) (

update displayo;
Interruptflag = 0;
if (contin test() == BREAK) return (BREAK);

I
I
if (step size == NCYCLES) {

updatedisplayo;)
return(CONTINUE);

computeoutput() (
register int i;
float *sender, *vt, *end;
float net;

compout2flag = 0;
for (i = ninputs; i < nunits; i++) { /* to this unit *1

net = bias[i];
sender - &activation[first weight_to[i]];

end = sender + numveights_to[i];
Vt - weight[i];
for (; sender < end ;)

net += (*sender++)*(*wt++); /* from this unit */

netinput[i] = net;
activation[i] =(float) (1.0 / (1.0 + (float) exp( (double) ((-1.0) *

net))));
)
compout2flag = 1;

I

compute error() [
register int ij;
float *wt, *sender, *end;
float del;

comperrorflagl = 0;
comperrorflag2 = 0;

for (i - ninputs; i < nunits - noutputs; i++) (
error[i] = 0.0;I

while(Icompout2flag);
compout2flag - 0;
for (i=nunits-noutputs, j=O; i < nunits ; j++, i++)f

if(target[j] >= 0) /* We care about this one*/

error[i]= target[j] - activation[i];
else

error[i] = 0.0;

1

187



comperrorfiagi - 1;
for (i. nunits - 1; i >. ninputs; i--)(

del = deltali] = error[i] activation[iJ (1.0 -

activationi i);
if (first-weight-tolil + num_weights tolil < ninputs) continue;
/* no point in propagating error back to input units *
sender = &error[first-weight_tojiji;
end sender + num-weights-toli];
wt weight[i];
for (;sender < end;)

*sender++ += del *w+)

comperrorflag2 =1;

compute_wed()
register mnt i;
float *wi, *sender, *end;
float del;
compwedflag2 - 0;

while (Icomperrorflag2);
compiirrcrflag2 = 0;

for (i = ninputs; i < nunits; i++)
sender = &activationjfirst weight_toj];
end = sender + num-weights-toji];
del = deltali];
wi - wedlil;
for (;sender < end;)

*i += del *(*sender++);

if( i <=(nunits -1)) compwedflagl =1;

compwedflag2 =1;

I

clear wed()
register mnt l,j,num;
register float *wi, *end;

for (i =ninputs; i < nunits; i++)(
bedlil 0.0;
wi = wedlil;
end = i + num weights toj;
for (;wi < end;)

*i+= 0.0;

change-weights()

188



register Int i;
register float *vt, *dwt, *epi, *vj, *end;

for (i - ninputs; i < nunits; i++) (
vhile( !compvedflagl && Icompwedflag2);

compwedf'lagl . 0;

dbiaslil = lrate*deltalil+ momentum *dbiasli];
/*lrate vs bepsilon delta[iJ*/
biasti] +. dbias~iJ;
wt = veight[ij;
dvt= dweight[iJ;
vi = edji];
end = t + num-weights_toli];
for (w t < end; ) (
*dvt irate * (*wi) + momentum *(*dwt); /*lrate vs (*epi++) *

*++- 0.0;

/* pos_neg-constraintso;*/

fla Is (la)00
float pcss . (float) 0.0;

change -weights follov()
register int i;
register float *vt, *dvt, *epi, *vi, *end, *pwi;
float tb, dp, den;

p-css w css;
css =0.0;

dp =0.0;

link-sum();

for (i - ninputs; i < nui~its; i++)
tb = bedli];

dbiasjiJ = tb*bepsilonli] + momentum * dbias[i];
biasli] += dbias[iJ;
css +=((double) tb)*((double) tb);
dp +=((double) tb)*((double) pbedjiJ);
pbed[iJ tb;
bedlil =0.0;
Vt - weight[iJ;
dvt= dweightfi];
vi = edji];
pwi =pvedli];
epi =epsilonli];
end w t + num-weights_to[iJ;
for (;vt < end;)(

189



*dvt - (*epi++)*(*vl) + momentum * (*dvt);
*vt++ .i= *dvt++;
css +- ((double) (*wi))*((double) (*vi));
dp += ((double) (*vi))*((double) (*pvi));
*p 4j+. *wi;

* =+ 0.0;

den .p_css * ss;
if (den > 0.0) gcor =dp/(sqrt(den));
else gcor = 0.0;

pos-neg_constraintso;

constrain veights()
pos_neg_constraintso;
link-constrain so;

p05_neg_constraints() j
float **fpt;

for (fpt =positive -constraints; fpt && *fpt; fpt++)
if (**fpt < 0.0)

**fpt - 0.0;

for (fpt - negative -constraints; fpt && *fpt; fpt++)
if (**fpt > 0.0)

**fpt - 0.0;

link constraints()
register mnt i'j;
float t;

for (i - 0; i < nlinks; i++)(
t - *constraintsti].cvecIO];
for (j - 1; j < constraints~ii.num; J++)(

*constraintsti]-cvec~j] = t

link-sum()
register int i'j;
float ss;

for (i - 0; i < nlinks; i++)(
ss = 0.0;

190



for (j -0; j < constraintsli.nui; J++) (
ss .~*constraints[il.ivec(jJ;

for (j =0; j < constraints[i].rxum; J++) (
*constraints[i].ivectjJ ss;

register mnt i,prev-index;
register float *pp;

for (i = 0, pp = ipattern[patnoJ; i < ninputs; i++, pp+i)
activationhil = *pp;

strcpy(cpname, pnafne[patno]);

settarget()
register mnt i;
register float *pp;

for (i =0, pp = tpattern[patnoJ; i < noutputs; i++, pp++)(
targetfil - *pp;
if (targetji] ==1.0)(

targetri] tmax;

else if(targetfil = 0.0)
targetliJ 1 - tniax;

setup_pattern()
setinputo;
set target();

tallcompute error()
register mnt i, j;
float *wt, *sender, *end;
float del;

for (i = ninputs; i < nunits - noutputs; i++)(
elcor[i] 0.0;

for (l=nunits-noutputs, j = 0; i < nunits ; j++, i++)(
if(targetfj] >- 0) /* 1,care about this one*/

errorli]= target[j] - activationhil;
else

191



error~i] =0.0;

for (im nunits -1; i >. ninputs; i--)
del -delta[i] errorfil* activationli] * (1.0 - activationhil);
if (first-veight_to[iJ + num w eights_toli) < ninputs) continue;
/* no point in propagating error back to input units *

sender - &error~first-weight_toiil;
end =sender + num-weights tot ii;
wt weight[iJ;
for (;sender < end;)(

*sender++ += del *v+)

talltrial()(

setup_patterno;
if (cascade)
if (mnit_output() == BREAK) return (BREAK);
if (cycle() .= BREAK) return (BREAK);

else
compute-outputo;
if (step_size < PATTERN)(

update displayo;
if (single_flag)

if (contin test() BREAK) return(BREAK);
j /* end single *

/ * end stepsize *
1/* end else */

tallcompute erroro;
comperrorflagl ;; 1;

sumstats();
return (CONTINUE);

/ * end of talltrial*/

trial() (

if (!forkflag)(
forkf lag = 1;
errno - 0;
pid =fork();
if (errno >0)

fprlntf(fp, "Trouble with fork, errno -%3d: %s\n", errno,
sys_errlist[errnoJ);

if(pid .=0)
errno . 0;
function - mpadvise(MPA CPUSET, 4);

192



if(errno > 0)
fprintf(stderr, "At 2nd proc call errno is X3d, which means %s\n",
errno, sys errlist[errnoJ);
errno - 0;
forkagain:
if(doneflag) (

forkflag = 0;
exit(0);

compute-erroro;

change-weightso;
while( !parent flag);
parentflag = 0;
goto forkagain;

) /*end of pid eq 0 *
if(pid 1. 0) return;

) /* end of train *

sumstats() {
register i-' idj;
register >
pss -0.0;

while( !comperrorflagl);
couiperrorflagl = 0;

for (j -0,1 =nunits -noutputs; i <nunits; i++,j++) f
if (targetij] >. 0)(

t - errorfi];
pss += t*t;

tss += pss;

ptrain()
return(train('p'));

strain()
return(train('s'));

train(c) char c;
int t,i,old,npat;
char *str;
parentflag - 0;
donef lag = 0;
forkf lag = 0;

if (ISystem Defined)

193



if (!define_systemo)
return(BREAK);

/*in case prey epoch was terminated early we clear the weds and beds

clear wedo;
cycleno -0;

for (t =0; t < nepochs; t++)(
epochno++;
for (i = 0; 1 < npatterns; i++)

usedlil i
if (c -- 'p') I

for (i - 0; 1 < npatterns; i++)(
npat = rnd() * (npatterns - i) + i
old = usedli];
usedji] -usedinpat];
used[npat] - old;

tss - 0.0;

for (i -0; 1 < npatterns; i++)(

patno - usedlil;
if( !forkf lag) (
setinputo;
set targeto;

trial();
) * end of forkf lag *

compute-outputo;
sumstatso;
if(lflag) [
compute w edo;

if (i I. (npatterns -1))
patno - used[i+1];
setinputo;
set targeto;
parentflag - 1;

/ * end of i not eq last pattern *

)/* end of If lag */

1/* end of npatterns for loop*/
if (tss < ecrit) break;

if (t!= (nepochs - 1)
patno - used(0J;
setinputo;
set targeto;
parentflag - 1;
) * end of t ne loop *

194



if (Interrupt)
Interrupt_flag - 0;
update-displayo;
if (contintest()o BREAK) return(BREAK);

if (step_size .. EPOCH) / * defined as 4*/
update -displayo;
if (single Iflag)

if (contin test() .. BREAK) return(BREAK);
)/*end of single flag*/

) * end of EPOCH */
) * end of nepochs for loop *

donef lag -1;
parentflag -1;
if (step_size u.NEPOCHS) f * defined as 5 *

update-displayo;

return(CONTINUE);

talltrain()
mnt t,i,old,npat;
char *str;

if (ISystemDefined)
if (Idefine systemo)

return(BREAK);
/*in case prey epoch was terminated early we clear the weds and beds

cycleno - 0;
tss - 0.0;
for (i - 0; i < npatterns; i++)(

patno - used[iI -=i
if(talltrial() .. BREAK) return(BREAK);

if (step_size .. PATTERN)(
update -displayo;
if (single_flag)

if (contin-test() .. BREAK) return(BREAK);

if (Interrupt)
Interrupt_flag = 0;
update_displayo;
if (contin_test() mm BREAK) return(BREAK);

/ * end of npatterns for loop*/

return(CONTINUE);

195



) /* end of talltrain */

tall() (
int save lflag;
int save-singleflag;
int save nepochs;
int save_step_size;

save_lflag = lflag; iflag = 0;
save_single_flag - single_flag;
if (in stream == stdin) singleflag - 1;
savestep_size = step size;
if (step_size > PATTERN) stepsize = PATTERN;
savenepochs - nepochs; nepochs - 1;
tallflag = 1;
talltraino;
tallflag - 0;
lflag - save_lflag;
nepochs = savenepochs;
single flag = savesingle_flag;
step_size = save_stepsize;
return(CONTINUE);

testpattern() (
char *str;
int save_single_flag;
int save_step_size;

if (ISystem.Defined)
if (Idefinesystemo)

return(BREAK);

tss - 0.0;

str - getcommand("Test vhich pattern? ");
if(str .. NULL) return(CONTINUE);
if ((patno - getpattern number(str)) < 0) {

return(puterror("Invalid pattern specification."));
)
if (cascade) C

save_single_flag = single_flag; singleflag = 1;
savestep_size - step_size; step_size - CYCLE;

)
talltrial();
update_displayo;
if (cascade) (
singleflag = savesingle flag;
step_size - save_step_size;

)
return(CONTINUE);

196
a.



nevstart()
random seed - rando;
reset-veights();

reset veights()
register int i,j,k,first,num;
char ch;

epochno = 0;
pss - tss - gcor - 0.0;
cpname[0] - \=
srand(random-seed);

if (ISystem_-Defined)
if (Idefine-systemo)

ret urn (BREAK);

for (j - 0, k - 3*nunits; j < nunits; J++, k++)
first - first -weight_toiji;
num a num -w~ights_tojj;
for (i -= i < num; i++)

vedij]ii - dweight[j][i] - 0.0;
if (pved) pved[j][i] 0.0;
ch - vchar[jJ[i];
if (isupper(ch)) ch -tolover(ch);
if (ch -- '.') (

veight[j][iJ - 0.0;

else(

if (constantsrch - 'aI.random)
if (constants[ch - 'a'J.positive)(
veight[j J[iJ - vrange * rnd();

else
if (constants[ch - a'J.negative)

weight[j][iJ wrange * (rnd() 1);

else
weight[j][i] f vrange * (rnd() -.5);

else(
veightlj][il - constants[ch - 'a'].value;

bedlil - dbias~j] - 0.0;
if (pbed) pbed[j] - 0.0;
cii - bchar~j];

197



if (isupper(ch)) ch - tolover(ch);
if (ch -- '.l) (

biasiji - 0;

else
if (constants[ch - 'a'J.random)

if (constants~ch - 'a'j.positive)(
bias[jJ - wrange *rnd();

else
if (constants[ch - a'J.negative)

bias[j] - wrange * (rnd() - 1);

else
bias[jJ vrange * (rnd() -.5);

else
biasiji constants~ch - 'a'J.value;

constrain veightso;
for (i = 0, j = 4*nunits; i < noutputs; i++, J++)(

lumpedij] - target[i] - 0.0;

for (i - 0; i < nunits; i++)
netinputlil - activation[iJ - delta~i] -error[i] 0.0;

for (i - 0; i < 3*nunits; i++)
luuaped[i] = 0.0;

update -displayo;
return(CONTINUE);

set lgrain()
char old_grain -string[STRINGLENGTHJ;
struct Variable *vp, *lookup~varo;

strcpy(old_grain-string,grain_string);

vp - lookup_var("lgrain");
change-variable( "lgrain", vp);

if(startsame(grain string, "epoch"))strcpy(grain string, "epoch"');
else if (startsame(grain_string,"pattern"))

strcpy(grain-string, "pattern");
else (
strcpy(grain -string,old_grain_string);
return(put-error("urecognized grain -- not changed."));

198



return(CONTINUE);

set-follow -modeo)
struct Variable *vp, *lookup-varo;
int pv, i, J;
pv -follow;

vp -lookup_varQ'follov"');
change-variable( "follow", vp);

if (follow .= 0) return (CONTINUE);
if (pwed .. NULL) (

pved = ((float **) emalloc((unsigned)(sizeof (float *)*nunits)));
(void) install-varQ'pved", PVweight,(int *) pved, nunits,

nunits, NOMENU);
for (i = 0; i < nunits; i++)

pwed[i] = ((float *)
emalloc((unsigned)(sizeof(float)*num-weights_to[iJ)));

pbed - ((float *) emalloc( (unsigned) (si zeof (f loa t) *nunits)));

(void) install-var("pbed", Vfloat,(int *) pbed,
nunits, 0, NOMENU);

if (pv -= 0) 1
for (i - 0; 1 < nunits; i++)(

for (j - 0; j < num weights_toli]; J++)(
pved[iJ[j] = 0.0;

for (i - 0; 1 < nunits; i++)
pbedliJ - 0.0;

gcor - css - 0.0;
return(CONTINUE);

change_crate()
struct Variable *varp;

if ((varp - lookup var("crate")) I. NULL)(
change-variable("crate",(int *) varp);

else (
return(put_error("crate is not defined"));

drate - 1 - crate;
return(CONTINUE);

199



initweights() {
int define_bp_network();
(void) installcommand("network", define_bp_netvork,GETMENU,(int

NULL);
(void) installcommand("weights", read_weights, GETMENU,(int *)

NULL);
(void) installcommand("weights", write_weights, SAVEMENU,(int *)

NULL);
(void) installvar("nunits", Int,(int *) & nunits, 0, 0,

SETCONFMENU);
(void) installvar("ninputs", Int,(int *) & ninputs, 0, 0,

SETCONFMENU);
(void) installvar("noutputs", Int,(int *) & noutputs, 0, 0,

SETCONFMENU);
(void) installvar("wrange",Float,(int *) &wrange,O,0,

SETPARAMMENU);)

WEIGHTS. C

/* file: weights.c

read in network descriptions, and set up constraints.
First version implemented by Elliot Jaffe.
Date of last revision: 8-12-87/JLM.

Masscomp revisions pipeline ver 13 */

/*LINTLIBRARY*/

/* the following is the form for network description files.

definitions:
nunits <int>
ninputs <int>
noutputs <int>
maxconstraints <int>
constraints:
<char> <float> or <char> [random positive negative linked]

end

network:
<strings of . and chars as defined in definitions:>
end
biases:
<a single line of . and chars as biases for units>
end
sigmas:
<a single line of .'s and chars specifying sigmas -- harmony theory
only>

200a.



end
<EOF>
*l

#include "general.h"
#include "command.h"
#include "veights.h"
#include "variable.h"

float **weight - NULL;
char **wchar; /* pointers to vectors of chars

that are used in resetting weights*/
float *bias = NULL;
char *bchar; /* like wchar *1
float **epsilon;
float *bepsilon - NULL; /* thresh epsilon array *!
float **ved = NULL;
float *bed NULL;
float *sigma - NULL; /* strength parameter for knowledge atoms *!

struct constants constants[26];

float **positiv, ."onstraints;
float **negrw .raints;
/* Array of L. istraint, for keeping links together */

struct constraint *constraints - NULL;

float lrate - 0.5;

float wrange = 1;

int nunits = 0;
int ninputs - 0;
int noutputs - 0;
int maxpos - HAXCONSTRAINTS;
int maxneg - MAXCONSTRAINTS;
int nlinks - 0;
static nposconstr = 0;
static nnegconstr - 0;
int epsilonmenu - SETWTMENU;
char netdescrname[BUFSIZ];

int lumpid, lumppage; /* added for shared mem 11 apr 89 bb */
unsigned lumpsize;

float *lumped -NULL;

int fnvtid, fnvtpage;
unsigned fnvtsize;
int *fnvt NULL;

201



mnt vtvedid, wtwedpage;
unsigned wtwedsize;
float **wtwed -NULL;

int bp; /* TRUE if program is bp *

# define ENLARGE POS -1
# define ENLARGENEC -2

define_bp_network()
bp - 1;
define-neto;

define netvork()
bp = 0;
define-neto;

define net()
char *sp;
char string[BUFSIZ];
FILE * sv instream;
struct Variable *lookup_var 0
int
boolean defined-weights -FALSE;

sv instream - in stream;
sp =get command("filename for network description: )
if (sp ;;. NULL) return(CONTINUE);
strcpy(net-descr_,name,sp);

if ((in -stream - fopen(sp, "r")) .. NULL)f
in-stream -sv instream;
return(put_error("Can't open network file."));

nlinks - 0;

for (i - 0; 1 < 26; 1++)(
constants[i].random -FALSE;
constants[i].positive - FALSE;
constantsfiJ.negative = FALSE;
constantsli].link -FALSE;
constantsli].value =0.0;

cosat[r a]rno RE

constantslr - 'all-random = TRUE;

constants['p' - 'a'J.positive - TRUE;
constants['n' - 'a'J.random = TRUE;

202



constantsl'n' - 'a' J.negative - TRUE;

while (fscanf(in stream, "%s", string) I. EOF)(
if (!strcmp(string, "definitions:")) [

if (read definitions() .. BREAK) [
fclose(in stream); in-stream - sv-instream;

return(BREAK);

else
if (!strcmp(string, "constraints:"))(
if (read constraints(constants) .. BREAK)(

fclose(in stream); in-stream - sv-instream;
re turn(CBREAK);

else
if (Istrcmp(string, "network:"))(
defined weights - read network(constants);
if (!defined weights) [
if (put error(err -string) .. BREAK)(

fclose(in stream); in stream - sv instream;
return(BREAK);

else
if (!strcmp(string, "biases:"))(
if (read_biases(constants) .. BREAK)(

fclose(in stream); in_stream - sv-instream;
return(BREAS);

else
if (Istrcmp(string, "sigmas:"))(
if (read sigmas(constants) .. BREAK)(

fclose(in stream); in-stream - sv-instream;
return(BREAK);

else
if (!strcmp(string, "end"))(
/* just skip over it *

else(
sprintf(err-string,

"error reading network file: I don't understand Xsn",string);
if (put_error(err -string) == BREAK) (

fclose(in stream); in-stream = sv instrean;
return(BREAK);

- 203



fclose(in-stream);
in stream . sv instream;
if C(niinks)
constrain weightso;

return(CONTINUE);

read definitions()
char stringfBUFSIZJ;
struct Variable *varp,

*lookup~var 0

while (fscanf(in-stream, "Us", string) 1= EOF)(
if (!strcmp(string, "end"))

return(CONTINUE);
if ((varp - lookup var(string)) I. NULL)(

change variab1e(string,(int *) varp);

else
sprintf(err_string,

"Error: unknown variable in network file, Zs\n", string);
return(put-error(err string));

read netvork(con)
struct constants *con;

mnt i,r,s,block,since_first,last -weight_to,tempint;
int rstart,rnum,rend,sstart,snun,send,con-index;
char ch,all -ch,*strp;
char .-tzing[BUFSIZJ;
int needline - 1;
float *tmp; char *ctmp;

(void) srand(random-seed);

/* activation, bias, target, error, delta arrays lumped here in shared

memory */
errno - 0;

lumpsize - (unsigned)(sizeof(float) *(7*flunits + noutputs));
lumpid - shmget(O, lumpsize, 066611PCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys_errlistlerrnoJ);
printf("lumpid is %10d\n", lumpid);
errno - 0;
lumppage - calc_page(lumpsize);

a 204



lumped - (float *) shniat(lumpid, lumppage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys_errlistllerrnol);

for (i . 0; 1 <6*nunits + noutputs; i++)
lumpedji] - 0.0;

errno - 0;

/* weight and wed "r" arrays for shared memory *
wtwedsize - (unsigned)(sizeof(float *) *(3*nunits));
wtvedid = shmget(0, wtwedsize, 066611PCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys errlist[errnoJ);
printf("wtwedid is Xl0d\n", wtvedid);
errno - 0;
wtwedpage = caic_page(wtwedsize);
wtwed - (float **) shmat(wtwedid, ,.twedpage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys_errlistterrnol);
errnc 0;

weight =&v.''rol;

1* weight at**) emalloc((unsigned int)(sizeof(float *
nunits))); */

epsilon - ((float **) emalloc((unsigned int)(sizeof(iUoat*)*
nunits));

wchar - ((char **) emalluc((unsigned int)(sizeof(char *
nunits)));

fnwtsize -(unsigned)(sizeof(int *) *(2*nunits));
fnwtid - shmget(0, fnwtsize, 06661IPCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys-errlistjerrno]);
printf("fnwtid is %l0d\n", fnwtid);
errno - 0;
fnwtpage . calc_page(fnwtsize);
fnwt - (int *) shrnat(fnwtid, fnwtpage, 0);

if (errno >0)
fprintf(stderr, "Xs\n", sys_errlistterrnol);
errno - 0;

first_weight -to = &fnwt[0J;
/*first weight_to = (int *) emalloc((unsigned int)(sizeof(int)*
nunits)); */

1* for (r - 0; r < nunits; r++)
first-weight_toirJ = nunits;

AP 1 205



num -weights_to - &fnwt~nunitsj;
/*iium-Veights_to - (int *) emalloc((unsigned int)(sizeot(int)*

nunits)); */

for (r - 0; r < nunits; r++)(
nuni-weights_to[rJ - 0;

first-weight_toiri - nunits;

(void) ins tall-var("weight", PVweight, (int *) weight, nuni ts, nuni ts,
SETWTMENU);

(void) install-var("lepsilon", PVweight,(int *) epsilon, nunits,
nuni ts,

epsilon-menu);
if (bp)

wed - &wtwed[nunits];
1* wed =((float**) emalloc((unsigned int)(sizeof(float *

nunits))); */
(void) install-var("wed",PVweight,(int *) wed,nunits,nunits,

SETSVMENU);

rstart =0; rend nunits -1; sstart 0; send -nunits -1;
for (block - 0; ;block++)(

gbagain:
if (fscanf(in stream,"Xs",string) ==EOF)(

sprintf(err_string,"error in network description");
return(FALSE);

if (strcmp("end",string) .= 0)(
if (block) return(TRUE);

else (
sprintf(err-string,"error in network description");

return(FALSE);

all ch- \;
if Tstring[O] .. 1%'){

fscanf(in stream, "%dZ.dd",&rstart,&rnum,&sstart,&snum);
rend = rstart + rnuni -1;
send = sstart + snum -1;
if (stringil]) [

all-ch .stringil];

else(
if (!block)(

needline - 0;
I
elsef

sprintf(err_string,"error in network description");

19-r 206



return(PALSE);

) I
for (r - rstart; r <. rend; r++)
if (tall ch) (
if (needline)

if (fscanf(in -stream,"Zs",string) .. EOF)
sprintf(err_string,"not enough units in network

description");
return(FALSE);

else needline = 1;

else
for (s - 0; s < snum; s++) stringis] -all-ch;

string[s] \1

first weight_to[rI . sstart;
last -weight to - send;
num weights_to[rJ - 1 + last-weight to -first weight toir];

weightir] -((float *)
emalloc ((unsigned int)(sizeof(float) *num-weights_to[rJ)));

epsilon[rJ - ((float *)
emalloc ((unsigned int)(sizeof(float) *

nuni-weights_toiri)));

wchar[rJ - ((char *)
emalloc ((unsigned int)(sizeof(char) *

num-weights tofrJ)));
if (bp) [

wed[rJ = ((float *
emalloc ((unsigned int)(sizeof(float) * num-weights_toir])));

for(s -0; s < num weights_to[rJ; s++)(
weight[rJ[s] 0.0;
epsilonlrl[si 0.0;
wcharlrllsJ - .=
if (bp) wed[rI[sJ - 0.0;

for (strp - string,s = sstart,since-first = 0; s <. send; s++)

/* loop over the from units *

ch = *strp++;
wchar[r][since first] - ch;
if (ch == 0.') 1
since-first++;

elsef

207



/* first check if this is realy a character *
if (lisalpha(ch)) (

sprintf(err_string,"non-alpha character in network");
return(FALSE);

/* upper case means this weight is non-changable *
if (isupper(ch)) (
/* make it lower case *

ch . tolower(ch);
epsilonir][since-first] - 0;

else(
epsilonlr][since first] - lrate;

/* now set up the char based on the stored con definitions *
if (con[ch - 'a'].random) (

if (con[ch - 'a'].positive) (
if (nposconstr >. maxpos) (

enlarge_constraints(RNLARGEPOS);

weight[r][since first] - wrange * rndo;
positive -constraints[nposconstr++]

&weight[r] [since-first];

else
if (con~ch - 'a'].negative)

if (nnegconstr >. maxneg){
enlarge constraints (ENLARGE NEG);

weight[r] [since first]
wrange * (rnd() - 1);

negative_constraints[nnegconstr++]
&veight~rI (since_first];

else
weight[r][since-first] - vrange * (rnd() -.5);

else
weight[rflsince first] - conich - 'a'].value;

I
if (con[ch - 'a'].link)(

con index . (con~ch - a'].link - 1);
if Tconstraints[con_index] .num >.

constraints~con_indexi.max) (
enlarge_constraints(con index);

tempint = constraints[con index] .num;
constraintsf con-index] .cvec[tempintI

208



-&weight[r][since-first];

if (bp) (
constraints Icon index] ivec Itempint I

-&vedlr]lsince-firsti;

tempint - constraints[con indexJ-num + 1;
constraintslcon-index].num -tempint;
1* this kludge (tempint) is for the MS compiler *

since first++;

read-biases(con)

struct constants *con;

int j ,rstart,rend,rnum,block, con index, tempint;
char ch,all ch,*strp;
char string[BUFSIZ];

bias = &lumped[3*nunits];
/*bias -(float *) emalloc((unsigned int)(sizeof (float) *nunits));*/

(void) install-var("bias", Vfloat,(int *) bias, nunits, 0,
SETWTMENU);t

bepsilon - (float *) emalloc((unsigned int)(sizeof(float)*
nunits));

(void) ins tall-var ("bepsilon", Vfloat,(int *) bepsilon, nunits, 0,

epsilon-Menu);
bchar ft(char *) emalloc((unsigned int)(sizeof(char) *nunits));

if (bp) (
bed - (float *) emalloc( (unsigned int)(sizeof (float) *nunits));

(void) install var("bed", Vfloat,(int *
bed,nunits,O,SETSVMENU);

for (j - 0; j < nunits; J++)
bIasjjJ - 0.0;
bepsilonlj] 0;
bcharljJ - '.I;

if (bp) bedli] -0.0;

rstart - 0; rend - nunits -1;

209



for (block - 0; ; block++)
gtagain:

if (fscanf(in stream,"Xs",string) .. EOF)
return(put-error("problem in bias description"));

if (strcmp(string,"end") .. 0)
if (block) return (CONTINUE);
else return(put-error("problem in bias description"));

if (string[O] .. I%')(
fscanf(in stream,"Zd"d',&rstart,&rnum);

rend - rstart + mnum -1;
if (stringil] I. '\0')

all -ch - stringil];
for (j - 0; j < mnum; J++)(
string[j] - all-ch;

string[j] - \;

else goto gtagain;

for (strp - string, j -rstart; j <. rend; j++, strp++)(
ch - *strp;

bchar[j] - ch;
If (ch -- '.') I

biastil = 0;
bepsilonlil = 0;

else(
/* first check if this is mealy a character *

if (tisalpha(ch)) (
return(put-error("non-alpha character in bias"));

/* upper case means this weight is non-changable *
if (isupper(ch)) [
1* make it lover case *

ch - tolover(ch);
bepsilon[j] - 0;

elsef
bepsilonhi] - lrate;

/* nov set up the char based on the stored con definitions *
if (con[ch - 'a'J.random) {

if (conich - a'J.positive) (
biasij] v range * rndo;
if (nposconstm >. maxpos) (

enlarge_constraints(ENLARGEPOS);

210



positive constraints[nposconstr++] - &biaslj I;

else
if (con[ch - a'].negative)(

biasij] vrange * (rnd() 1);
if (nnegconstr >. maxneg)(
enlarge _constraints (ENLARGE NEG);

negative constraints Lnnegconstr++I &bias~j J;

else
bias[j] - wrange * (rnd() -.5);

else(
biasij] - con[ch - 'a'].value;

if (con[ch - a'].link)(
con index -(con[ch - 'a'].link - 1);
if (constraints[con -index] .num >.

constraints[con-index] .max) (
enlarge _constraints(con-index);

tempint - constraints~con -index] .num;
constraints[con index].cvec~teipint] &biasfj];
if (bp) constraints[con -indexJ.ivecltempint] &bed[j];
corstraints[con-index] .num++;

read_sigmas(con) struct constants *con;(
int
char ch, all ch, *strp;
char string[BUFSIZ];
mnt rstart, rend, mnum, block;

sigma a (f loat *) emalloc ((unsigned int) (sizeof (f loat) *nuni ts));
for (j - 0; j < nunits; J++) (

sigmaijJ - 1.0; /* default sigma is 1.0 *

(void) install var("sigma", Vfloat,(int *) sigma, nunits, 0,
SETVTMENU);

rstart - 0; rend - nunits -1;
for (block - 0; ; block++)

gsagain:
if (fscanf(in -stream, "Us", string) .. EOF)(
return(puterror("problem in sigma description"));

if (strcmp(string,"end") .. 0)(

211



if (block) return (CONTINUE);
else return(put_error("problem in sigma description"));

if (string[Ol .. 'X')
fscanf(in stream,"%d~d",&rstart,&rnum);

rend - rstart + rnum -1;
if (string[1J I. '\0')

all ch -string[l];
for (j -0; j < mnum; J++)(

stringij) - all-ch;

stringfj) - \;

else goto gsagain;

for (strp -string, j - rstart; j <= rend; J++, strp++)(
ch -*strp;
if (ch MM '.9)

sigma[j] 1.0;

else
/* first check if this is really a character *

if (!isalpha(ch)) (
return(put error("non_alpha character in bias"));

if (isupper(ch))
/* make it lover case *

ch atolover(ch);

sigma[jJ . conich - a'J.value;
if (sigmaij] < 0)f

return(put error("can't set sigma less than 0!"));

read constraints(con)
struct constants *con;

char ch;
float flt;
int isflt;
char string[BUFSIZI;
char str[5J[30J;
int i,j,ch_mnd;
int nstr;

while (fgets(string, BUFSIZ, in stream) I. NULL)
if (string[01 -- NULL 11 string[0J .. '\n')

212



if (fgets(string, BUFSIZ, in-stream) -- NULL)(
break;

if (strncmp(string,"end",3) .. 0) break;

for (i - 0; i < 5; i++) strliHO0] - \;

(void) sscanf(string, "%c Xs %s %s %s Ws,
&ch, str[0J, str[1J, str[2], str[31, str[4J);

ch .(isupper(ch)) ? tolover(ch) : ch;
ch ind - cli - 'a,;
con[ch -indj.random - con[ch-indj-positive

conich indJ.negative - conlch-indj.link - FALSE;
conich indT.value - 0.0;
for 0i 0; (G < 5) && (str[iJ[0J I- '\01); i++)

if ((isfit - sscanf(strjiJ,"%f",&flt)) 1)(
conich_indl.value - fit;

else
if (startsame(strfiJ, "random"))

con[chindJ.random - TRUE;
else
if (startsame(str[iJ, "positive"))

con[ch-indJ.positive - TRUE;
else
if (startsame(str[i), "negative"))

con~ch-indi.negative - TRUE;
else
if (startsaine(strliI, "linked"))

con[ch-indJ-link - ++nlinks;
else (

sprintf (err -string,
"unknown type for constant %c, Zs\n", ch, str[i]);

if (put -error(err_string) a. BREAK)
return(BREAK);

if (nlinks)
constraints -(struct constraint *

emalloc ((unsigned int)(sizeof (struct constraint) *(nlinks +
1));

for (i - 0; i < nlinks; i++)(
constraintslil.num - 0;
constraintslil.max - MAXCOI4STRAINTS;
constraintsfi).cvec - ((float **)

emalloc((unsigned int)(sizeof(float *

213



MAXCONSTRAINTS));
constraints[il.ivec - ((float*)

emalloc((unsigned int)(sizeof(float *
MAXCONSTRAINTS)));

for (j - 0; j < nunits; J++)
constraintslil.cvecljl - NULL;
constraintsfij.ivecjj] - NULL;

else
constraints - NULL;

positive-constraints - ((float*)
emalloc ((unsigned int) (sizeof (float *)*MAXCONSTRAINTS)));

for (I- 0; i < MAXONSTRAINTS; i++)
positive -constraints[iJ - NULL;

negative constraints - ((float*)
eralloc ((unsigned int) (sizeof (float *)*MAXCONSTRAINTS)));

for (i - 0; i < MAXCONSTRAINTS; i++)
negative constraints[l] - NULL;

return(CONTINUE);

change_lrate()
struct Variable *varp;

if ((varp - lookup var("lrate")) I. NULL)(
change-variable("lrate",(int *) varp);

else(
return(put-error("BIG PROBLEM: irate is not defined"));

if (epsilon I. NULL)
for (I - 0; i < nunits; i++)

for (j - 0; j < fu._-veights_to~il; J++)(
if (epsilon[iI[jJ 1. 0.0)

epsilon[i][j] - lrate;

If (bepsilon I. NULL)
for (i - 0; i < nunits; i++)(

if (bepsilonlil 1. 0.0)
bepsilonli] - irate;

214



/* given a defined system, we will write the matrix and the biases
out to a file. The file format is one floating point number per line,
with the weight matrix in row major format followed by the biases.

write-weights()
int i,j,end;
char *str a NULL;
char fname[BUFSIZ];
char *star-ptr;
char tstr[401;
FILE * iop;

if (weight -- NULL)(
return(put-error("cannot save undefined network"));

nameaga in:
str - get-command("weight file name:")
if (str .. NULL) return(CONTINUE);
strcpy(fname,str);
if ( (star ptr . index(fnanie,'*')) I. NULL)(
strcpy(tstr,star_ptr+l);
sprintf(star_ptr,"%d",epochno);
strcat(fname, tstr);

if ((iop - fopen(fname, "r")) I. NULL)
fclose(iop);

get command("file exists -- clobber?")
if (str .. NULL 11 str[OJ I. 'y')(

goto nameagain;

if ((iop - fopen(fname, "w")) .. NULL)(
return(put_error("cannot open file for output"));

for (i - 0; i < nunits; i++)(
for (j -0; j < num w eights_tolil; J++)(

fprintf(iop, "Zfn", weightf[ijj);

if (bias)f
for (i1 0; i < nunits; i++)(
fprintf(iop, "Xfn", biasli]);

if (sigma)f
for (i - 0; i < nuriits; i++)(

215



fprintf(iop, "Xf\n", sigmalil);

(void) fclose(iop);
return(CONTINUE);

read veights()
Tnt i,j,end;
register float *vt, *shvt, *wtend, *shend;
char *str = NULL;
FILE * iop;
if(!System Defined)

if(!deflne systemo)
return(BREAK);

if (weight .= NULL)(
return(put_error("cannot restore undefined network"));

if((str - get command("File name for stored weights: ") -NULL)

return(CONTINUE);

if ((iop = fopen(str, "r")) == NULL)(
sprintf(err string,"Cannot open weight file Zs.",str);
return(put-error(err-string));

for (i - 0; i < nunits; i++)
if(num -weights_to[iJ .. 0) continue;
for (j = 0; j < num weights_to[i]; J++)(
if (fscanf(iop, "if", &weight[i][jJ) -- 0)
fclose(iop);

return(put-error("weight file is not correct for this
network"));

end =nunits;

if (bias I. NULL)
for (i - 0; i < end; i++)(
if (fscanf(iop, "UV', &bias~i]) 0) 0)

fclose(iop);
return(put_error("weight file is not correct for this

network"));

216



if (sigma I. NULL) (
for (i = 0; i < end; i++) (

if (fscanf(iop, "Uf", &sigma[i]) = 0) {
fclose(iop);
return(puterror("weight file is not correct for this

network"));
}

}
}
(void) fclose(iop);
update_displayo;
return(CONTINUE);

/* realloc positiveconstraints, negativeconstraints, and link
constraints

this is called whenever the allocated constraint lists run out of
space for additional constraints 14-May-87 MAF / 15-May-87 JLM*/

enlarge_constraints(conindex) int con-index; (
if (con index - ENLARGEPOS) (
maxpos += 100;
positiveconstraints = ((float **) erealloc

((char *) positive constraints,
(unsigned int) ((maxpos - 100) * sizeof(float *)),
(unsigned int) (maxpos * sizeof(float *))));

}
else if (con index - ENLARGENEG) (
maxneg +. 100;
negativeconstraints - ((float **) erealloc

((char *) negativeconstraints,
(unsigned int) ((maxneg -100) * sizeof (float *)),
(unsigned int) (maxneg * sizeof(float *))));

}
else (
constraints[con index].max += 100;

constraints[con index].cvec = ((float **) erealloc
((char *)constralnts[conindex].cvec,
(unsigned int)

((constraints[con_index].max - 100) * sizeof(float *)),
(unsigned int)

(constraints[con index].max * sizeof(float *))));
constraints[conindex].ivec - ((float **) erealloc

((char *)constraints[conindexj.ivec,
(unsigned int)

((constraints[con_index].max - 100) * sizeof(float *)),
(unsigned int)
(constraints[conindexj.max * sizeof(float *))));

}

217



Appendix 4

Modified SDMO Source Code for Pipeline Method

GENERAL. C
/*contains several general routines needed in the shared memory
version of the simulator*/

#include <stdio.h>
#include "main-def.h"

extern double *lumped;
extern mnt lumpid;
extern mnt *misc;
extern mnt miscid;

calc_page(size)
mnt size;

int inc, pg, endof, xtra, nuend;
inc - 1;1
pg = 4096;
endof -sbrk(O);
while (pg <- endof)

pg -4096 * inc;
++inc;

xtra -(pg - endof) + size;
nuend -sbrk(xtra);
return(pg);

) /* end of calc-page *

quito

shmdt(lumped);
shmctl(lumpid, IPCRID, 0);
shrndt(misc);
shmctl(uiiscid, IPCRMID, 0);
)/* end of quit *7

MAIN.C
/----------------------------------------------------*

/* Module Name: Main.c *

/* This is the main body of the program. *
/*Here a neural network with unlimited number of inputs/outputs

218



default: /* actually the last layer */
temp - on this netvork->nooflayers - 1;
for ( counter -0;

counter < on this_netvork->this_layer[temp]-
>no of neurons ; ++counter)

(
on-this network->net outputlist[counter] 

on This network->this_layerltempl-
>thisneuron[countei] ->output[O];I

break;

/* end of SEND OUTERLAYER */

.10 ---------------------------------

processneuron(this neuron)
NEURON *thisneuron;

/* Will just process the inputs add them according to law and
store the output so the layer is an independent block */

( /* begin of PROCESS NEURON */
int counter;
double pow(), hold-value;

hold value = this neuron-'Mias[O];
for ( counter =0;-counter < thisneuron->noof_inputs ; ++counter)

(
hold-value += (thisneuron->veight_list[counter]) *

(thisneuron->input_list[counter);
I

/* Here the actual function will be include as a pointer to have any
transfer functior available instead of the sharp threshold */

this neuron->output[O] f sigmoid(hold_value, this-neuron->threshold );

I /* end of PROCESSNEURON */

*----------------------------------.11

processlayer(this_layer)
LAYER *this_layer;

/* begin of PROCESSLAYER */
int counter;
for( counter =0; counter < this layer->no of neurons ; ++counter)

processneuron(thislayer->this_neuron[counter]);

I /* end of PROCESS LAYER */

219



/. .. .12

process netvork(this network)
NETWORK *this-network;

{ /* begin of PROCESSNETWORK */
int counter;

/* start with first layer...*/
sendouterlayer(thisnetwork, 0);
processlayer(this netvork->this_layer[O]);
print layer(thisnetwork, 0);
if ( this network->noof_layers > 1)
sendlayer(thisnetwork, 0);

/* Nov go the inner(hidden layers...if any */
if ( this network->no of layers > 1)

for (counter=l; counter< (this network->nooflayers-i); ++counter)[
processlayer(this netvork->this layer[counter]);
print_layer(thisnetwork, counter);
sendlayer(this netvork, counter);}

/* Finally the last layer and done ...and handle for one layer only.

*/

if ( this network->nooflayers > 1)
process_layer(this_network->this_layer[thisnetwork->no oflayers
-11);
sendouter_layer(this network, 1 ); /* send outer anyway */
if ( this network->no of layers > 1)
print_layer(thisnetwork, thisnetwork->no of layers -1);

) /* end of PROCESSNETWORK */

process network b(this network)
NETWORK *thisnetwork;
/* Same as previous routine..but it'll do it silently and will not
change the

net output/input list vector on network ..used by backpropagation
train..*/

{ /* begin of PROCESSNETWORK B */
int counter;

/* start with first layer...*/
send outer layer(this network, 0);
processlayer(this network->this_layer[O]);
/* Now go the inner(hidden layers...if any */

220



if ( this -netvork->no-of-layers > 1)
send-layer(this network, 0);

If ( this Tnetwork->no_of_layers > 1)
for (counter-1; counter< (this network->no-of_layers-i); ++counter)

process -layer(this-netvork->this-layer[counterJ);
send-layer( this network, counter);

/* Finally the last layer and done ... .and handle for one layer only.

if ( this -netvork->no_of_layers > 1)
process layer(this_network->this_layer~this netvork->no-of-layers
-11);

) * end of PROCESS NETWORKB *

221



will be created (By me of course) so It could be set as a process
1* Becker Co., Inc 1989 (C)

/*------------------------------------------------------------------*

#include <stdio.h>
#include "main-def.h"

main(argc, argv)
mnt argc;
char **argv;

( * begin of MAIN *

run_plain(argc,argv);
exit(O);

) * end of MAIN *

MAIN DEF.H

The neuron wiii process --
exp

/ w x -x )
i i 0

#include <errno.h>
#include <fcnti.h>
#include <signal.h>
#include <sys/types .h>
#include <sys/ipc.h>
#include <sys/shm. h>
# include <sys/sem. h>
# include <sys/mpadvise. h>

extern int errno;
extern char *sys _errlist(1;
static mnt shmemtemp;
static mnt smneurtemp;

typedef struct
neuron_typef

mnt no_of_inputs;
double *input_list; /* can be impreoved..for time being

this
is included.../

double *weight list; /* the actual weights of neurons*/
double *delwgt; 1* delta weight changes of neurons B.b.*/

222



double xzero;
double exp;
double threshold;
double (* transferfunction)();

/* any f,,nction can be placed here..cool */
double *output;
double *error; /*added BB */

double *delta; /*added BB*/
double *bias; /*added BB*/
double *delbias; /*added BB*/

)NEURON;
typedef NEURON *NEURONPTR;

typedef struct
layertype{

int no of neurons; /* on this the layer */
NEURONPTR *thisneuron; /*pointer to neuron pointers

on layer */
LAYER;

typedef LAYER *LAYERPTR;

typedef struct
networktype{

double *net_input_list; /* to have structure clear */
double *net output_list;
int no oflayers; /* on this network */
LAYERPTR *this_layer; /* pointer to layer pointers

on network */
) NETWORK;

typedef NETWORK *NETWORKPTR;

NETWORK current network; /* global holding current network */

typedef struct
set_up{

int no of inputs;
int no of layers;
int *neurons_perlayer;

) SETUPTYPE;

SETUPTYPE networksetup;

/* Now define the global variables, they are not pointers because */
/* when the program gets bigger compiler goes crazy and cannot store
*/ string..*/

223



char input -file name[80J, output file name[80],

network file name[8OJ, this buffier[BOI;

mnt global-cursor-y, global cursor x;

EPTEN P.C
/*---------------------------------------------------------------

1*Module Name: Back prop train.c MODIFIED FOR PIPLEINE bptrnp.c*/

Becker Co., Inc. 1989 (C)
1* -------------------------------------------------------------- *

f* NOTE: The field output of a neuron cell will be used to store the
error feedback..just temporarily for next interation..

#include <curses. h>
#include "main-def-h"

#define forkflag misc[OI
#define parentflag misc(1J
#define doneflag misc[21
#define procnetflag misc[31
#define checkerrflag miscfl41
#define erroroutflag misc[51

#define patterr lumped[OJ
#define toterr lumpedl]

typedef struct func-pass(
double value;
double thr;
double (* this function)();
)FUNC-ARG TYPE;

FILE *fopeno, *fp;

extern mnt *misc;
extern double *lumped;
mnt function, pid;

adjust bp error(this -network)
NETWORK *this-network;

/* from the last layer will start backpropagating errors and adjusting

weights as it goes toward the first layer. Assumes that the error is

already backpropagated and stored on <.output> field of each neuron on

224
lv.



layer ...*

( * begin of ADJUSTBPERROR *
int i, looper, neuron_loop;

while( Icheckerrf lag);
checkerrflag - 0;

for ( i - this network->no-of layers - 1I
i >- 0 ; /*don't adjust first layer on loop *

for ( neuron_loop - 0;
neuron -loop < this-network->this layer[i]->no-of-neurons;
++neuron-loop)

for (looper - 0;
looper < this-network->this-layer[iJ-

>this neuron [neuron loopj->no-of_inputs;
++looper)

this -network->this_layer[ i ->this-neuronineuron-loop 1-
>delvgt[looperj -

(0.5 * this -netvork->this_layer[iJ-
>this neuron[neuron_loopJ->delta[0J *

this -netvork->'this_layer[iI->this neuron[neuron_loop]-
>input_list[looperj) +

(0.9 * this -netvork->thislayerfiJ-
>this-neuron[neuron-loopJ->delwgt [looper]);

this-netvork->this layerlJ->this-neuron[neuron loop]-
>veight list[looperj +-

this -netvork->this_layer[ i ->this neuron~neuron loop]-
>delvgt [looper];

) /* end of looper for *
) * end of neuron -loop for *
)/* end of i layer for loop *
) * end of ADJUSTBP ERROR LAYER *

check error output(this network)
NETWORK *!his network;
/* Compare the output of net on training if it's on limit the stop

and also update the output field on last layer of network.
Returns 1 if output vector Is on range to be considered close to

/ * begin of CHECKERROROUTPUT *

225



int looper, neuron_loop;
double temp_ err, temp, sigmoido, derivativeo;

int inner, outer;
int lay, i, J, inputs;
FUNCARGTYPE dummy;

if( Iforkf lag) (
forkflag . 1;
errno - 0;
pid - fork();
if(errno >0)
fprintf(stderr, "Trouble vith fork, errno % 3d, which means Zs\n",

errno, sys_errlist[errnoJ);
errno - 0;

) * end of not fork *

if(pid . ~
errno - 0;
function - *padvise(NPACPUSET, 4);
if(errno >0)
fprintf(stderr, "Trouble with fork, errno %3d, which means Xs\n",
errno, sys -errlist[errnoJ);
errno . 0;
forkagain:

if(donef lag) (
forkf lag - 0;
kill(pid, SIGKILL);

exiLlO);

) * end if done *
for ( outer .0;

outer < this -network->no-of layers; ++outer)
for( inner.0; inner< this-netvork->this_layer[outerJ-

>no of neurons; ++inner)
This -network->this_layer[outer]->this-neuron[ innerl->error[0I -

0.0;

while (1 procnet flag);
procnetflag -0;

patterr -0.0;

for(looper =0;

looper < this -network->this layerlthis-network->no-of_layers - 11
->no-of-neurons; ++ looper)

temp_ err = this-network->this-layer~this-network->no-of_layers - 11-

226



> this neuron [looper I
->error[O] . this netvork->net output_list~looper) -

this-netvork->this-layerlthis netvork->no of layers - 1]
->this-neuron~looperl->output[OJ;

patterr +_ temp_err*temp-err;

toterr += patterr;

for(lay -this-network->no of-layers -1; lay >.0; lay )

for(i=O;i<this-netvork->this_layer[lay]->no_of-neurons; i++)

temp . this-netvork->this_layerilayJ->this-neuronliJ->bias[OJ;

for(J.O;J<this -netvork->this_layer[layj->this neuron[iJ-
>no-of_inputs; J++)

I
temp+. (this -netvork->this-layer[lay]->this-neuronl-

>input_list[j])

*(this-netvork->this_layer[lay]->this_neuronliI-
>veight_listfjJ);,

dummy.value . temp;
dummy.thr - this-netvork->this_layer~layJ->this-neuronfiJ-

> threshold;
dummy.this function . sigmoid;
temp . derivative(dummy);

temp . this -netvork->this layer[layj->this neuron[iJ->output[O];
this -netvork->this-layer[layJ->this-neuron[iJ->delta[OJ
this netvork->this layer[lay]->this-neuron[ i ->error[0I * temp*

(1.0 - temp);

if(lay < this netvork->no-of layers - 1)
checkerrflag ; 1;

for(J.0;J<this -netvork->this_layer[layJ->this neuron[iI-
>no Tof inputs; J++)

if (lay -.0)
inputs . 1;

else

this -netvork->this_layer~lay-1]->this_neuron[j J->error[O] +.
this -netvork->this_layerflayJ->this-rieuronfiI->delta[0J *
this-netvork->this_layer[layJ->this-neuron[ii->weight_listlil;

/*fprintf(fp, "error Zf\n",this -netvork->this_layer[lay-11-
>this neuronljJ->error[0J);*/

) * end else *

227



) * end j for loop *
) /* end i for loop */
) /* end lay for loop *
checkerrflag - 1;

for ( i .this -netvork->no-of_layers - 1
i >= 0 ; /* don't adjust first layer on ioop *
-- i)

for ( neuron loop . 0;
neuroni -loop < this-netvork->this layer[ij->no-of-neurons;
++neuron-loop)

this network->this layer[i]->this neuron[neuron loop]->delbias[0J
0.5 * this-netvork->this_layerlijJ-5this-neuronlneuron-loop]->delta[j]

0.9 * this -netvork->this_layerjJ->this neuron[neuron-loop]-
>delbias [01;

this -netvork->this -layer[i]->this neuron[neuron -loop]->bias[0J +.
this-netvork->this-layer[ i ->this-neuron[neuron-loop->delbias[0J;

) /* end of neuron loop for *

) * end of i layer for loop *

checkerrf lag = 1;

vhile( Iparentflag);
parentflag = 0;
goto forkagain;
) /* end of pid = zero *
if(pid 1. 0) return;

] * end of CHECKERROROUTPUT *

back-prop-train(this-network, this-alpha)
NETWORK *this network;
double this alpha;
/* Assumes that data is already placed on the net -output/input list

vector on network... This function is for a plain terminal*/
( /* begin of BACKPROPTRAIN *

extern char *read_stringo, *check-fileo;
FILE *temp, *fopeno;
int loo, cursory, cursorx, looper, dummy, no-of_patterns,

no of passes.0;
int fine, no -trials, t, done, i, step = 0, trials . 0;
register double temp_err;

mnt readit - 0;

228



char *fname, buff[80], thischoice;
WINDOW *back-screen, *errorscreen , *create-windovo;

parentflag - 0;
forkflag - 0;
doneflag - 0;

initscro;
backscreen - create vindov(20,70, 4,4);
error-screen - create_windov(2,70, 22,4);

insert string( back screen,
"Will the patterns be entered from keyboard/file (k/f)?",1,2,O);
vrefresh(backscreen);
getyx( back screen, cursory, cursor x);
thischoice - readkey_stroke(back-screen);

if( this-choice I. 'f' && this-choice I= 'k')

errormessage(back screen, error-screen ,"Wrong input..",
cursor_y, cursor x);

this choice - readkey_stroke(backscreen);
werase(error screen);

)
wrefresh(error screen);
insert string(back screen,"What is the pattern file name?",4,2,O);
vrefresh(back screen);

getyx(back..screen,cursor y, cursorx);
fname - read string(back screen);
fname = checkfile(fname, "r", backscreen, errorscreen,

cursory, cursor x);
strcpy(buff ,fname);

checkpattern file( buff, thisnetwork);

temp - fopen(buff, "r");

insert_string(back_screen, "For how many trials do you want to
train?",
6,2,0);
wrefresh(back screen);
getyx(backscreen, cursory, cursor x);
notrials - get_integer(backscreen, errorscreen, cursory,
cursor x);
vrefresh(back screen);
getyx(backscreen, cursor_y, cursorx);
step - answer yes no(back screen, error screen,

"Do you want to see all the steps (y/n)?", cursor y+1, 1);
wrefresh(back.screen);
trials - answer_yes_no(back screen, error-screen,

229



"Do you want to see all the trials (y/n)?", cursory+2, 1);
werase(back screen);

printnetworkstat(this_network, backscreen);
do-it again:

for(t = 0; t < no-trials; ++t)
(

noofpasses +- 1; /* incrememt the counter of the trainings */

if (trials)(
wrefresh(backscreen);

wmove(backscreen, 5,4);

wprintw(backscreen,
"Network has gone through Zd trials \n", no_of_passes);

)
if(Ireadit)(

rewind(temp);
fscanf(temp, "Zdkn", &no_of_patterns);
fscanf(temp , "Xdkn" , &dummy); /* skip next 2 values on file..*/

fscanf(temp , "Zd\n" , &dumy);
)/* end of if */
toterr = 0.0;
for( looper =0;

looper < no_of_patterns;
++looper)(

if (trials)(
wmove(back screen, 6,4);
wprintw(back_screen,

"Training file has Zd patterns, current pattern is Zd\n",

no of_patterns , looper + 1);

if (Iforkflag){

readnetwork io(this network, temp);

check-erroroutput(thisnetwork);

) /* end if*/
processnetwork-b(thisnetwork);
procnetflag - 1;

if(trials)(

for(loo - 0;
loo <this_network->this_layer[this_network->nooflayers

-12

230



->no-of-neurons;
++loo)

vmove( back screen, 9 + loo , 2);
wprintv(back -screen, " Item[ Zd I - Zf",
loe, this-netvork->this_layerlthis-network->no-of layers

->this -neuronflooJ->outputf~j);
wmove( back screen, 9 + loo , 25);

vprintv(back screen, "Desired Item[ %d % f\n",
loo, this-network->net-output_listilool);

) * end of if trials *
if (trials)

vmove(back screen, 7,4);
wprintv(back -screen, "patterr -Zf", patterr);
wmove(back-screen, 7,24);
wprintv(back-screen, "Toterr -Zf\n", toterr);

) * end of trial if */
if(looper I- no_of_patterns - 1)
read -netvork-io(this-network, temp);
else (
read-network-io(this-network, temp);

revind( temp);
fscanf(temp, "Xdn", &no of patterns);
fscanf(temp , "Zd\n" , &dufimy);
fscanf(temp , "Zd\n" , &dummuy);

read -network io(this-network, temip);
readit . 1;

adjust_bp_error(this-network);
parentflag . 1;

if (step) (

wmove(back screen, 16,5);
wprintv(back screen, " %d BP iterations \n", no-of_passes);
wprintw(back~screen, "Press Any key to continue",

no_of_passes);
wrefresh(back-screen);
getcho;

) * end of no of patterns FOR *

if (toterr < 0.04)(
fine . 1;

break;

231



) * end of no-trials FOR *
parentflag . 1;
kill(pid, SIGKILL);
if( Itrials) (
vrefresh(back-screen);

wmove(back-screen. 5,4);

vprintw(back -screen,
"Network has gone through Xd trials \n", no-of_passes);

vmove(back screen, 6,4);
vprintw(back-screen,
"Training file has %d patterns, current pattern is %dn",

no -of_patterns , looper);
for(loo - 0;

loo <this-netvork->this-layerlthis-netvork->no-of-layers

->no-of-neurons;
++loo)

wmove( back screen, 9 + loo , 2);
vprintv(back screen, " Item[ 4d ] . f",
loo, this netvork->this_layer [this-netvork->no of-layers

->this -neuronf1ooJ-)output[0J);
vmove( back -screen, 9 + loo , 25);

vprintw(back screen, "Desired Item[ %d % f\n",
loo, this-netvork->net-output_list[looJ);

vntove(back screen, 7,4);
vprintv(back screen, "patterr % f", patterr);
vmove(back screen, 7,24);
vprintv(back screen, "Toterr Z f\n", toterr);

)/* end of not trials IF *

if(fine .. 1)
wmove(back-screen, 16,0);
vprintv(back -screen, "FINISHED, solution found after %d training
sequences\n", no_of_passes);

vrefresh(back-screen);

vmove(back Rcreen, 18,5);
getyx(back~screen,cursor_y, cursor-x);

if(ansver_yes-no(back-screen, error-screen,

232



"Do you want stats (yin)?", cursor y, cursor-x)

system ("clear");
rstats(stdout);
wn~ove(back screen, 17,0);
getyx(back-screen, cursor_y, cursor-x);

if( answer_yes no(back-screen, error-screen,
"Wo -ld you like to train again (yin)?1", cursory, cursor-x) =

system("clear");
initscr();

if (done==1)
no_of_passes = 0;

readit - 0;
forkf lag - 0;

goto do_it_again;

endvin();
/ * end of BACK PROPTRAIN *

NEURTULP.C

/* -------------------------------------------------------------- *
/*Module Name: neuron tool.c MODIFIED FOR PIPELINE neurtulp.c *

/*Set of routines to handle the actual network operations *
/* it's device inderendat,i.e. Just carries out the math and *
/*connections, can be called from any screen/window environment *

/* Becker Co., Inc. 1989 (C) *
/* -------------------------------------------------------------- *

#include <stdio.h>
#include <malloc.h>
#include "main-def.h"

#define TF VALUE L 0.0
#define TFVALUEH 1.0

mnt lumpid, lumppage, pid;
unsigned lumps ize;
double *lumped = NULL;

mnt miscid, miscpage;
unsigned miscsize;
int *misc - NULL;

233



typedef struct funcpass (
double value;
double thr;
double (* this function)();

) FUNCARGTYPE;

FILE *fopeno, *fp;

/*

This set of routines create (dynamically) a neural
network of any size the only limitation is the machine
that is running it.

It will be developed as device independent as possible so that
to make it run on any machine all it would be needed will be
the drivers for that particular machine (for the graphics ouput)

by Becker Co, Inc (1989) (C)
*/

/*----------------------------F .1

---- -----------------------------------*

NEURON create neuron( no of input)
int no of input;
(

NEURON temp_neuron;
int looper;
double sharpo, sigmoido;

1* tempneuroninputlist - (double *)calloc(noofinput,
sizeof(double));

tempneuron.weight list = (double *)calloc(no ofinput,
sizeof(double));

tempneuron.delvgt - (double *)calloc(no ofinput,
sizeof(double));

*1

temp_neuron.inputlist - &lumped[shmemtemp];
shmemtemp +- no of input;
temp_neuron.weight_list - &lumped[shmemtemp];
shmemtemp +. no of input;
tempneuron.delwgt = &lumped[shmemtemp];
shmemtemp +. no of input;

tempneuron.output = &lumped[shmemtempj;
shmemtemp +. 1;
temp_neuron.error = &lumpeO[shmemtemp];
shmemtemp += 1;
temp neuron.delta - &lumped[shmemtemp];
shmemtemp +- 1;

234
a.



temp_neuron.bias - &lumped[shmemtempl;
shmemtemp +. 1;
tempneuron.delbias - &lumped[shmemtemp];
shmemtemp += 1;

/* Now that we allocate space for the weights..initialize randomly
*/

for ( looper .0 ; looper < no_ofinput ; ++looper)
I tempneuron.weight_list[looper] -( rando* 6.1035E-5) - 1.0;

tempneuron.delvgt[looperJ - 0.0;I

/* compiler doen't like undefined values..so intialize everything
*/

temp_neuron.no of inputs - no_ofinput;
temp_neuron.xzero - 0.0;
temp_neuron.exp = 1.0;
temp_neuron.threshold - 0.0;
temp_neuron.transferfunction - sigmoid ; /* default sharp TF */

temp_neuron.output[O] = 0.0;
temp_neuron.error[O] = 0.0;
temp_neuron.delta[O] - 0.0;
temp_neuron.bias[O] = 0.0;
temp_neuron.delbias[O] - 0.0;

return(temp_neuron);
}
*-----------------------------------F .2

LAYER create_layer( layer_no, no ofneurons, preylayer no of neurons)
int layer no;
int no of neurons;
int prey_layer no of neurons;

/ /* begin of CREATE LAYER */
NEURON create-neurono;

LAYER templayer;
int i;
NEURON *dummyneuron; /* memory space MUST be allocated to

hold
the actual neuron space */

/* Create dynamically the pointers to neurons*/
temp_layer.thisneuron = (NEURONPTR *)calloc(noof-neurons,

sizeof(NEURON_PTR));

le- 235



dummyneuron - (NEURON *)calloc(no_ofneurons, sizeof(NEURON) );

temp_layer.noof neurons - no of neurons;

/* Now create the actual neurons *
for (i.O; i < no of neurons ; ++i)
(

dummy_neuron[il . create neuron(prev_layer no of neurons);
temp_layer.thisneuron[i] - &dummy_neuron[i];)

return(templayer);

) /* end of CREATELAYER */

*-----------------------------------F .3

NETWORK createnetwork(net set_up)
SET UP TYPE net set up;
A 1* begin of CREATE NETWORK */

NETWORK networktemp;
int counter;

LAYER *dummy_layer;

int i, totneuron, connects;
totneuron = 0;
connects = 0;

/*the following calcs the size of the network then creates enough
shared memory space to handle the parallel procesing *

for(i - 0; i < netset_up.no_of_layers; i++)

totneuron +.- net_set_up.neurons_per_layer[i];
if (i -. 0)

connects - netsetup.noofinputs *
net set_up.neurons_per layer[i];

else
connects +- netsetup.neurons_per_layerfi-1 *

net_set_up.neurons_per_layer[i];
) /* end of for */

connects. (netsetup.neurons_per_layer[OJ *2 ) +
(net_set_up.neurons_per_layer[(netsetup.no_oflayers - 1)]*2) +
(connects * 3) + (totneuron * 5) + 4;

236



errno . 0;

lumpsize - (unsigned)(sizeof(double) * connects )
lumpid -shmget(0, luapsize, 066611PC-CREAT);
if (errno >0)
fprintf(stderr, "lumped errno is %3d, which means %s\n", errno,
sys-errlist [errno]);

errno = 0;
lumppage - caic -page(lumpsize);
lumped -(double *) shmat(lumpid, lumppage, 0);
if (errno > 0)
fprintf(stderr, "In lumped Xs\n", sys-errlist~errno]);
for( i -0; i< connects ; i++)

lumped[ij - 0.0;

/*create enough space for ten flags to be used in bp_train.c-- see
define section *1
miscsize - (unsigned)(sizeof(int) * 10 )
miscid . shmget(0, miscsize, 06661IPCCREAT);
if (errno >0)
fprintf(stderr, "misc errno is %3d, which means Zs\n", errno,
sys_errlist[errno]);
errno - 0;
miscpage - calc_page(miscsize);
misc = (mnt *) shmat(miscid, miscpage, 0);
if (errno > 0)
fprintf(stderr, "In misc Zs\n", sys_errlistlerrnoJ);
for( i - 0; i< 10 ; i++)

misclil - 0;

shmemtemp =2;

smneurtemp -0;

/* Create fist the pointers to the layers of the network *
network -temp.this_layer - (LAYER PTh

*)calloc(net-set up-no of layerssizeof(LAYER-PTR));
dummy_layer ; (LAYER *)calloc(net-set-up.no-of_layers,

sizeof(LAYER) );

network-temp.no-of_layers - net_set-up.no_of_layers;

for (counter-0; counter < net_set_up.no_of-layers ; ++counter)

if ( counter .. 0) /* first layer *

dummy_layericounter] - create_layer(counter,
net-set-up.neurons_per layer[counterj,
net set up.no_of_inputs);

network_ temp.this _layer[counterI
&dummy layer[ counter);

237



else
{

dummy layer(counterl - create-layer( counter,
netsetup.neurons per layericounter],
net set up.neuronsperIayer[counter-1]);

network temp.thiilayer[counter] -
&dummy_layer[counter];3

)

/* Now create the input and output array (dynamically) as
requested

by user...to be used to train or output nicely*/

network temp.net_input_list - &lumped[shmemtemp];
shmemtemp+= net_setup.neurons_per layer[O] + 10;

networktemp.net_output_list i &lumped[shmemtemp;
shmemtemp+= net setup.neurons_per_layer[(net_setup.noof_layers
-1)]
+ 10;

return ( netvorktemp);

} /* begin of CREATENETWORK */

* -------------------------- F .4
---------------------------------- */

Now a set of routines to read and write the current
*/

I* network ..so work is not lost
*/

/*--------------------------------------------------------------------

saveneuron(this_neuron, this_file)
NEURON *this_neuron;
FILE *thisfile;

/* assumes that file was already open in calling function..just saves
the neuron in order..i.e all fileds *1

{ 1* begin of SAVENEURON */
int tempindex;

fprintf(this file,"Zd\n", this neuron->noofinputs);
fprintf(this-file,"%f\n", this-neuron->bias[O]);

/* finally save the weights */

for ( tempindex -0; tempindex < this neuron->no-ofinputs;
++temp_index)

238

a. • • m



f p r int f ( t hi 1,s-f ii1,e % f \n"
this neuron->veight list[temp-indexJ);

) * end of SAVENEURON
*---------------------------- --- F .5

---- ----------------------------------- *1

save _netvork(this -network, file-name)
NETWORK *this network;
char *file-naae;

{ * begin of SAVE -NETWORK *
int layer index, neuron-index;
FILE *this-file;

if ( (this-file -fopen(file name , "v") ) -NULL)

printf("Sorry cannot write on this file ... \n");
exit(l);

/* start by saving the network set up..*/
fprintf(this file, ffXd\n" , this_network->this_layer[O]-

>this-neuron[O]
->no of inputs);

fprintf(this file, "%d\n" , this_netvo~rk->no_of_layers);

for ( layer_index =0;
layer_index < this-netvork->no-of-layers;
++layer index)

fprintf( this_file, "Xd\n"/* - neurons on layer -------- [ Idd \n"*/,
this-netvork->this -layer[layer indexj->no-of-neurons/*,
layer index*/);

/* Nov save the network ..every neuron from 0 -> no *
for ( layer_index .0;

layer_index < this network->no-of_layers;
++layer-index)

for ( neuron index =0;
neuron -index < this-netvork->this-layer~layerindexJ-

>no of reurons;+neuron-index)

save-neuron(this-netvork->this_layer[ layer index]->
this neuron[neuron-index], this-file )

239



/ /* end of SAVE NETWORK */

/ F- 7.6

read neuron(thisneuron, this_file)
NEURON *thisneuron;
FILE *thisfile;

/* assumes that file was already open in calling function..just saves
the neuron in order..i.e all fields */

( /* begin of READNEURON */
int temp_index;

fscanf(this file,"d\n", &this neuron->no_ofinputs);
fscanf(thisfile,"%lf\n", &thisneuron->bias[O]);

/* finally read the weights */

for ( tempindex -0; tempindex < this neuron->no ofinputs;
++temp_index)

(
fscanf(this file,"Zlf\n", &this neuron-

>weightlist[tempindex]);
}

} 1* end of READNEURON

-I * - - - - - - - - - F . 7
----------------------------------- */

read network(this network, filename)
NETWORK *this_network;
char *filename;

/* Note that to be on the safe side when calling this function it's
better... BELIEVE ME..to send in a buffer[80] instead of just the
pointer for 'file-name' otherwise it's not reliable */

I* begin of READ NETWORK */
int layer index, neuron index;
FILE *fopen), *this_file;
SET UP TYPE temp_setup;
NETWORK createnetwork();

if ( (this file . fopen(file name , "r")) -- NULL)

240



printf("Sorry cannot read on this file...\n");
exit(l);

rewind(this-file);

/* start by reading the network set up..*/
fscanf(this file, "Zd\n", &temp-set -up.no of_inputs);
fscanf(this -file, "Zd\n", &temp-set-up.no~of-layers);
temp-set-up.neurons_per_layer - (mnt *)calloc(

temp_set-up.no of layers,
sizeof(int) );

for ( layer index .0;
layer index < temp_set up.no-of_layers;
++layer_index)

fscanf( this_file, "Zd\n "

&temp_set-up.neurons_per_layerilayer index]);

/* Once the set up is there..create the memory space to hold the
network to be read ... */
*this-network - create-network(temp_set-up);

/* Now read the network ..every neuron from 0 -> no *
f or ( layer-index .0;

layer_index < this-network->no-of_layers;
++layer_index)

for ( neuron index =0;
neuron-index<this-network->this_layer~layer indexj->no-of-neurons;

++neuron-index)

read-neuron(tnis-network->this_layer[layer_index]->
this neuron [neuron index],

this-file )

) * end of READNETWORK *

check -pattern -file(file_name, for_this-network)
char *file name;
NETWORK *for-this-network;

Vill scan the file with the pattern(s) and check that all data is

241



consistent..so vhen training starts it von't hang ...Assumes that
the

file exits vhen called..

Outputs 0 on success, 1 on failure..
*/

[ /* begin of CHECK PATTERNFILE */

FILE *this file, *fopen();
int no-of_patterns, no ofinputs, no of outputs,

looper, counter
double temp_value;

/* Check first if the file exists */
if ( (this_file = fopen(file name , "r")) a= NULL)

printf("Sorry cannot read this file...\n");
exit(l);

)

revind(this_file);

/* Nov that the file is there check if patterns are correct,
i.e. dimesions and format */

fscanf(this_file, "Zd\n", &noof_patterns);
fscanf(thisfile, "Xd\n", &noof_inputs);
fscanf(thisfile, "d\n", &no_of_outputs);
if ( (noof inputs I. for this netvork->this_layer[OJ-

>this neuron[O] ->no_of_inputs ) - II
(no of outputs I- for this netvork-

>thislayer[for_thisnetvork ->noof-layers -1]->no ofneurons) )

printf("Sorry patterns dimensions do not match netvork's...\n");
exit(l);

/* Finally check that file contains patterns correctly
doesn't check vhen incomplete data... */

for (looper -0; looper < no_ofpatterns; ++looper)
(

for ( counter =0;
counter < no ofinputs;
++ counter)

if ( fscanf(this_file,"Zlf\n", &temp_value) -- EOF)
f

printf( " Sorry..incomplete data on file...\n");
exit(l);

)

for (counter-O; counter < noofoutputs ; ++counter)

242



if ( fscanf(this_file,"Zlf\n", &tempvalue) - EOF)
t

printf( " Sorry..incomplete data on file...\n");
exit(l);

)
if (temp_value I- TF VALUEH && temp value I- TFVALUEL)
{
printf(" Outputs have different dimension \n");
exit(l);

I
I

I
/* If everything vent correct then the file has right information

return succesful code..*/
return(O);

/* end of CHECKPATTERNFILE */

read network io(this network, this_file)
NETWORK *this netvork;
FILE *this file;
/* Assumes that file already exists and that it's already open so

it's just ready to read the input and ouput from current position
on file...

*/

( /* begin of READ NETWORKIO */
int looper;

/* read the input vector and place it on network */

for (looper-0;
looper < thisnetvork->this layer[O->this_neuron[O]

->no ofinputs

++looper)
fscanf(this_file, "Zlf\n", &this network-

>netinputlist[looper]);

/* read the output vector and place it on network */

for (looper-O;
looper < this netvork->thislayer[this netvork->noof_layers -11

->no of neurons
++looper)

fscanf(thisfile, "Zlf\n", &this n, work-
>net_output_list[looper]);

/ /* end of READNETWORK 10 */

/*

Nov a set of transfer functions that can be used as transfer

243



function
*/

double sharp(this_x, this_threshold)
double thisx;
double this-threshold;

{ /* begin of SHARP */
if ( this x >= this-threshold)
return(TF.VALUEH);

else
return(TF VALUE L);

) /* end of SHARP */

double sigmoid( thisx, thisthreshold)
double thisx;
double this threshold;
{ /* begin of SIGMOID */

double exp();
double limit - 12.0;

/* just in case convert to double everything..*/
if ( this x - this threshold > limit)

return( 0.9999998);
else

if ( this x - this threshold < -limit)
return( ".00000123;

cIse
return( ( 1.0/(1.0 + exp((-1.0)* (thisx - thisthreshold)))

) )
) /* end of SIGHOID */

double derivative(thisfunc)

FUNC ARG TYPE this func;
1 :* begin of DERIVATIVE */
double temp, ddelta = 1.OE-10;

temp - ( thisfunc.thisfunction(thisfunc.value + ddelta,
this func.thr) -

this func.this-function(this_func.value, this func.thr)
) / ddelta;

return(temp);

/ /* end of DERIVATIVE */

* -------------------------- F .7

244

i 4.n l I I



I* *I

/* Nov a set of routine to process the network */
/* */

sendneuronoutput(thisvalue, onthisnetwork, from-layerindex,
fromneuronindex, to neuron index)

double this value;
NETWORK *on this network;
int from layerindex;
int from neuron index;
int toneuronindex;

/* Calling routine should check that the last layer doesn't send
output

or this routine will do nothing...*/

{ /* begin of SENDNEURON OUTPUT */

if ( (fromlayer_index +1) >i on thisnetvork->no oflayers)(
printf(" Sorry no next layer to send values to..");
exit(l);

onthis_netvork->this_layer[from layerindex + 11
->thisneuron[to neuronindex]-

>input_list[from neuron_index].
this value;

} /* end of SENDNEURON OUTPUT */

/*--------------------------- F .8 ------------------------------*

send_layer(onthis network, this_layer_index)
NETWORK *on this network;
int thislayer_index;

/* This function will send values from layer to next ..in (hidden)
layers,

for last layer use other routine */

I* begin of SENDLAYER */

int fromctr, toctr, fromtmp, to tmp;

I* if ( (thislayerindex -a 0) II *1
if (thislayerindex >- (on thisnetwork->no oflayers -1) )(
printf(" Sorry cannot process this layer...");
exit(l);

2

" 245



/* We waste a little memory (-4bytes) but speed is gained ...*
from -tup - on this network->this_layer~this_layer_mndexi-

>no of neurons
to-tmp -on this-network->this_layer[this_layer-index +11-

>no of neurons

for (from -ctr .0; from-ctr < from tmp; ++fro,._ctr)
for ( to-ctr -0; to-ctr < to_tmp; ++to-ctr)

send-neuron Output(
on -this netvork->this layer[this_layer_index]-

>this-neuronjfrorn-ctrj->
output[OJ,

on this network,
thi~s_layer -index,
from-ctr, to-ctr);

/ * end of SENDLAYER *

1*--------------------------------------------------p 9

send outer layer(on_this network, first_or-last)
NETWORK *kon this network;
int first-or-last;

( /* begin of SENDOUTER_-LAYER *
mnt counter, counteri, temp;

switch( first-or-last)

case 0: temp - 0;
for ( counter-O;

counter<on-this network->this_layer[OJ->no-of neurons

++Counter)

for ( counterl-O;
counteri < on this network->this layer[O]->
this-neuronlOT->no-of_inputs ; ++counterl)

on-this-network->this_layer[O]->this-neuron[counterJ
->input-list~counterl]m

on-this retork->net_input_list~counterlj;

break;

246



Appendix 5

Modified PDP Source Code for Hybrid Epoch-Pattern Method

GENHYB.C
/* This file is part of the PDP software package. Copyright 1987 by
James L. McClelland and David E. Rumelhart. Please refer to licensing
information in the file license.txt, which is in the same directory
with this source file and is included here by reference.*/

/* general.c
Some general functions for PPD-pc package.
First version implemented by Elliot Jaffe.
Date of last revision: 8-12-87/JLM.
Masscomp revisions: 30 OCT 90/ bob Bennington */

#include "general.h"
#include "command.h"
#include "variable.h"
#include <signal.h>
#ifdef MSDOS
#include <memory.h> /* for memcpy() in erealloc in genhyb.c */
#include <process.h> /* for system() in do exec in command.c */
#endif
FILE * in stream - stdin;
int Interrupt_flag = 0;
int single_flag = 0;
int step_size;
nt random seed;

char step_string[STRINGLENGTH];
struct Command table *Command;
extern int dump-template (;
extern int cleardisplay (;
extern int updateIdisplay (;
extern int redisplay (;
extern int do io ();
extern int do-network (;
extern int dosystem (;
extern int do command 0;
extern int do-comfile (;
extern int do-exec );
extern int setlog (;
extern int run fork(;
extern float *wds;
extern nt wdsid;
extern int lumpid;
extern float *lumped;
extern int *misc;
extern int miscid;

247



extern float *dvts;
extern int dvtsid;
extern float *vtss;

extern int vtssid;
extern int fnvtid;
extern int *fnvt;
extern float *vds;
extern float **'wtwed;
extern int vtvedid;

int handler() (
int int handler 0

(void) signal(SIGINT, int-handler);
Interrupt_flag - 1;

#ifdef MSDOS
char *index(somestring, somechar)
char *somestring;
char somechar;

return strchr(somestring,somechar);

#endif

char *emalloc (n) /* check return from malloc *
unsigned n;

char *p,
*,alloc 0

p - malloc(n);
if (p .. 0)
put_error("out of memory");

return p;

char *erealloc (ptr,oldsize,nevsize) /* check return from
realloc*/
char *ptr;
unsigned oldsize;
unsigned nevsize;
I
#ifndef MSDOS

char *realloc 0
char *p;

p - realloc(ptr,newsize);
if (p .. 0)
put_error("out of memory");

248



return p;

#else (if MSDOS)

char *malloco;

char *p;

p - malloc(newsize);
if (p .. 0)

put error("out of memory");
if (ptr && p) (
memcpy(p, ptr, oldsize);
free(ptr);

return p;

tendif MSDOS

caic_page(size) /* added 7 apr 89 RIWB *
int size; /* used to caic amount of space needed for *
I 1* shared memory in increments of 4K pages *
mnt inc, pg, endof, xtra, nuend;
inc =1;

pg -4096;
endof - sbrk(0);
while (pg<. endof)(

pg - 4096 * mnc;
++inc;

xtra =(pg - endof) + size;
nuend -sbrk(xtra);
return(pg);

startsame(sl, s2) 1* does si start the same as s2? *
char *sl,

*s2;(
while (*sl && *s2)
if (*sl++ I. *s2++)

return(0);

if(*sl && !*s2) /* if si is longer than s2 it should fail *
return(0);

return(l);

char *strsave (s)
char *s;

char *p,

249



*emalloc 0;

if ((p -emalloc((unsigned)(strlen(s) + 1))) 1. NULL)
(void) strcpy(p, s);

return(p);

randint(lov, high)

int low,high; [
int answer;
float randf;
int range;

randf -rnd();
range - high - low + 1;
answer - randf * range + low;
return(ansver);

quito
int r;
char *str;
str -get-command("Quit program? -- type y to confirm: )

if (str && str[OJ . 'y') i
end displayo;

,added 7 apr 89 detaches shared *
1* memory and deallocates its storage- RWB *

shuidt(misc);
shmdt(lumped);

shmdt(fnwt);
shmdt(wtss);

shmdt(dwts);
shmdt(vds);
shuidt(wtwed);

shmctl(fnwtid, IPC -RMID,O);
shmctl(miscid, IPC -RMID,O);
shmctl(lumpid, IPC RID,O);
shmctl(vtwedid, IrC RNID,O);
shmctl(dwtsid, IPC HMID,O);
shmctl(wtssid, IPC7RMID,O);
shmctl(wdsid, IPCRMID,O);

exit(O);

else
return(CONTINUE);

stats() ( * this function clears the screen then prints out *
clear-displayo; /* the statistics package. It also returns the curser

250



io -move(5,0); /* back where it belongs so the command line will be *
io refresho; /* in the proper position --3lJan 89 bob bennington *

rstats(stdout);
io move (0,0);
io ref resho;
return(CONTINUE);

set step()

char old_step_string[STRINGLENGTH];

struct Variable *vp, *lookup_var();

strcpy(old_step_string,step_string);

vp -lookup_var("stepsize");
change-variable("stepsize" ,vp);

if (startsame(step_string,"nepochs"))
strcpy(step-string,"nepochs");

else if (startsame(step_string,"epoch"))
strcpy(step_string, "epoch");

else if (startsame(step-string,"pattern"))
strcpy(step_string,"pattern");

else if (startsame(step-string,"ncycles"))
strcpy(step-string,"ncycles");

else if (startsame(step_string,"cycle"))
strcpy(step-string,"cycle");

else if (startsame(step_string,"update"))
strcpy(step string, "update");

else if (startsame(step-string,"default"))
strcpy(step-string,Default-step_string);

else (
strcpy(step_,string,old -step_string);
return(put_error("urecognized stepsize -- size not changed."));

set stepsizeo;
return(CONTINUE);

set_stepsize()
if (strcmp(stepstring,"update") .. 0) step_size -UPDATE;
else if (strcmp(step_string,"cycle") -=0) step size - CYCLE;
else if (s trcmp(s tep-s tring, "ncycles")- 0) step-size - NCYCLES;
else if (strcmp(step_string, "pattern") -=0) step-size - PATTERN;
else if (strcmp(step_string,"epoch") ==0) step_size a EPOCH;
else if (s trcmp(s tep-s tring, "nepochs")- 0) step_size - NEPOCHS;

251



initgeneral()
extern int int-handler 0

Interrupt_flag - 0;
strcpy(step_string,Default_step_string);
set stepsizeo;
iti commandso;
(voida) signal(SIGINT, int handler);
(void) install command("?Wi, do help, 0, 0);
(void) install-command("disp/", do-command, BASEMENU, (int

DISPLAYMENU);
(void) install -command("opt/", do-command, DISPLAY4ENU, (mnt

DISPLAY0PTIONS);
(void) install-command("exam/", do-command, BASEMENU, (mnt

SETMENU);

(void) install-command("get/", do-command, BASEMENU, (mnt
GETMENU);

(void) install-command("save/", do-command, BASEMENU, (mnt
SAVEMENU);

(void) install-command("set/", do-command, BASEMENU, (mnt
SETMENU);

(void) install-command("config/", do-command, SETMENU, (mnt
SETCONFMENU);

(void) install-command("env/", do-command, SETNENU, (mnt
SETENVMENU);

(void) install-conimandQ'mode/", do-command, SETMENU, (mnt
SETMODEMENU);

(void) install-conzmand("param/",do-command, SETHENU, (mnt
SETPARAI*IENU);

(void) install-couamand("state/", do-command, SETHENU, (mnt
SETSVMENU );

(void) install command("clear", clear display, BASEMENU, 0);
(void) install command("do", do-comfile, BASEMENU, 0);
(void) install command("log", set log, BASEMENU, 0);
(void) install-cQmmand("quit", quit, BASEMENU, 0);
(void) install -command("run", do-exec, BASEHENU, 0);
(void' install command ("s tats", stats, BASEKENU, 0); /* added 30

Jan89 by bob bennington */
/* (void) install command("srand", random seed, BASEHENU, 0); *

(void) install command("state", redisplay, DISPLAYMENU, 0);
(void) install~var("seed", Int, (mnt *) & random-seed, 0,

0, SETPCMENU);
(void) install-var("single", Int, (mnt *) & single_flag, 0,

0, SETPCMENJ);
(void) install-var("stepsize", String, (mnt *) step_string,0,

0,NOMENU);
(void) install-commandQ'stepsize",set_step,SETPCHENU,(int *

NULL);

tifdef MSDOS

252



sleep(n_sec)
int n_sec;
{

Int i,j;
for (i - 0; 1 < (n sec); i++)

for (j - 0; j < 20000; J++);

#endif MSDOS

BPH.C

/* file: bp.c MODIFIED TO bph.c

Do the actual work for the bp program.

First version implemented by Elliot Jaffe

Date of last revision: 8-12-87/JLM

HYBRID VERSION Masscomp revisions

*/
tinclude "general. h"

#include "bp.h"
#include "variable.h"
#include "wgtsh.h"
#include "patterns.h"
#include "command.h"

#define forkflag misc[0]
#define compoutiflag misc[1]
#define comperrorflagl misc[2]
#define comperrorflag2 misc[3]
#define compwedflagl misc[4]
#define parentflag misc[5]
#define doneflag misc[6]
#define patno misc[7]
tdefine compout2flag misc[8]
#define compvedflag2 misc[9]
#define pss lumped[6*nunits]
#define tss lumped[6*nunits +1]
#define momentum lumped[6*nunits +2]
/*#define lrate lumped[6*nunits +3]*/

char *Prompt - "bp: ";
char *Default_step_string - "epoch";
char grain_string[20] - "pattern";
boolean SystemDefined - FALSE;
boolean lflag - 1;
boolean cascade - 0;
tnt epochno - 0;

253



int cycleno - 0;
int nepochs - 500;
int ncycles - 50;
/*int patno - 0*
/*float tss - 0.0;
float pss - 00*
float ecrit - 0.0;
float crate - .05;
float drate - .95;
float gcor - 0.0;
int follow - 0;
float *netinput - NULL;
float *activation -NULL;
float *error - NULL;
float *target - NULL;
float *delta - NULL;
float **dweight - NULL;
float **pwed - NULL;
float *dbias - NULL;
float *pbed - NULL;
float tmax - 1.0;
/*float momentum - 09*

float mu -. 5;
int tallflag - 0;

int *misc wNULL;
extern float *lumped;
extern float **wtwed;
float *dwts - NULL;
float *vtss = NULL;
float *vds - NULL;

extern int read -weightso;
extern int write-weights();

int function, status, pid;
int miscid, miscpage;
unsigned miscsize;
int wtssid, vtsspage;
unsigned wtsssize;
int wdsid, wdspage;
unsigned wdssize;
int dwtsid,dwtspage;
unsigned dwtssize;
FILE *fopeno, *fp;

init_system() (
int strain (), ptrain 0,tall 0,test_pattern 0

reset w eightso;
int get Tunameso, set_lgraino, cycleo, newstarto;
int change_lrateo, change crateo, set-follow_*odeo;

254



epsilon-menu - SETCONFMENU;

initvwei ghts();

(void) install command("straln", strain, BASEHENU,(int *)NULL);
(void) install command("lptrain", ptrain, BASEMENU,(int *)NULL);
(void) install command("ltall", tall, BASEHENU,(int *) NULL);
(void) install-command("ltest", test pattern, BASEMENU,(int *

NULL);
(void) install comznand("lcycle", cycle, BASEMENU,(int *) NULL);
(void) install-command("reset",reset_veights,BASEMENU,(int

*)NULL);
(void) install command ("news tart", nes tart, BASEENJ, (int *)NUJLL);
(void) instafl-command("unaies", get-unames, GETHENU,(int *

NULL);
(void) install-comznandQ'patterns", get_pattern pairs,

GETMENU,(int *) NULL);
(void) install var('lflag", Int,(int *) & lflag, 0, 0, SETPCMENU);
(void) install:-var("lgrain", String, (mnt *) grain_string,0,

0,NOMENU);
(void) install-command("lgrain",set lgrain,SETMODEMENU, (mt *

NULL);
(void) install var("follov", Int, (mnt *) & follow,O, 0,NOMENU);
(void) install-command("follov",set_follow-mode,SETHODENENU, (mt

NULL);

(void) install-var("cascade", Int,(int *)& cascade, 0, 0,
SETMODEMENU);

(void) install-var("nepochs", Int,(int *)& nepochs, 0, 0,
SETPCKENU);

(void) install-var("ncycles", Int,(int *)& ncycles, 0, 0,
SETPCMENU);

(void) install-var("epochno", Int,(int *)& epochno, 0, 0,
SETSVHENU);

/* (void) install-varQ'patno", Int,(int *)& patno, 0, 0,
SETSVMENU); */

(void) install-var("cycleno", Int,(int *)& cycleno, 0, 0,
SETSVMENU);

mnit_pattern_pairs();
/* (void) install var("pss", Float,(int *)& pss, 0, 0, SETSVMENU);
(void) install var("tss", Float,(int *) &tss, 0, 0, SETSVMENU);*/
(void) install var("gcor", Float, (int *) & gcor, 0, 0, SETSVMENU);

1*(void) instaFll var("momentui", Float,(int *
&montentum,0, 0,SETPARAMMENU) ; *

(void) install var(znu"l, Float,(int *) &mu,0,O,SETPARAMMENU);
(void) install-command("llrate", change_lrate, SETPARAMMENU, (mnt

NULL);
(void) install-couunand("lcrate", change_crate, SETPARAMMENU, (mnt

NULL);

255



(void) install var("lrate", Float,(int *)& irate, 0, 0, NOMENU);
(void) install var("crate", Float,(int *)& crate, 0, 0, NOHENU);
(void) install~var("ecrit", Float,(int *)&ecrit, 0, 0,

SETPCMENU);
(void) install-var("tmax", Float,(int *)&tuax, 0, 0,

SETPARAMMENU);

define_system(o
register mnt i,j, totnum;
register float *vi, *shvi, *shdvt;
register float *vt, *shwt, *vtend;
float *tmp;

if (Inunits)
put_error("lcannot mnit bp system, nunits not defined");
return(FALSE);

else
if (tnoutputs)

put error("cannot mnit bp system, noutputs not defined");
return(FALSE);

else
if (Ininputs){

put -error("cannot mnit bp system, ninputs not defined");
return(FALSE);

else

if (!(nunits && noutputs && ninputs))
put error("cannot run bp system, nunits not defined");
return(FALSE);

netinput - &lumped[5*nunitsJ;
netinput - (float *) emalloc((unsigned)(sizeof (float) * nunits));
(void) ins tall-var ("net input", Vfloat,(int *) netinput, nunits, 0,

SETSVMENU);
for (i - 0; i < nunits; i++)
netinput[iJ - 0.0;

(void) install-var("pss", Float,(int *)&lumpedl6*nunitsj, 0, 0,
SETSVKENU);

=s 0.0;

(void) install-var("tss", Float,(int *)&lumped[ 6*nuni ts + 1], 0,
0, SETSVMENU);
tss - 0.0;

256



(void) install var("momentum", Float,(int *) &lumped[6*nunits +
2] ,0,0,SETPARAHMBNU);
momentum - 0.9;

/*(void) install-var("lrate", Float, (int *) &lumped [6*nunits + 3),

0, 0, NOMENU);

irate - .5*

/* activation, bias, target, error, delta arrays lumped here in shared

memory */
/* lumped[] defined in weights because of the order functions are
iitialized*/

activation - &lumped[OJ;
1* activation = (float *) emalloc((unsigned)(sizeof(float)*

nunits)); */
(void) install var("activation",Vfloat, (it

*)activation,nunits,0,SETSVMENU);
1*for (i - 0; i < nunits; i++)
activation[i] - 00*

delta = &lumpedjnunits];
/* delta -(float *) emalloc((unsigned)(sizeof(float) * nunits));*/
(void) install var("delta"l, Vfloat,(int *) delta, nunits, 0,
SETSVMENU);

1* for (i1 0; i < nunits; i++)
delta[i) .0*

error - &lumped[2*nunitsJ;
1*error - (float *) emalloc((unsigned)(sizeof (float) * nunits));*/
(void) install-var("error", Vfloat,(int *) error, nunits, 0,

SETSVHENU);
1* for (i1 0; i < nunits; i++)

errorli] 0.;*

target - &lumped[7*nunitsJ;
1* target - (float *) emalloc((unsigned)(sizeof(float)*

noutputs)) ; *
(void) install var("target", Vfloat,(int *) target, nrutputs,

0, SETSVMENU);
1* for (i - 0; i < noutputs; i++)

target[iI - 00*

dweight - &vtved[2*nunits];
1*dveight - ((float **)

emalloc((unsigned)(sizeof(float *)*nunits))); *
(void) install-var("dveight", PVveight,(int *) dveight, nunits,

nunits, SETSVHENU);

257



totnum - 0;
for(i -0; i<nunits; i++) /*get total number of inputs for "s" variable

Of */
totnum +. rum-weights_to[i]; /* wed and weight arrays to

properly
size sh mew segment*/

dwtssize -(unsigned)(sizeOf(float) *(nunits + totnum));

dwtsid -shmget(0, dwtssize, O666IIPC-CREAT);
if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,

sys errlistlerrnoi);
printf("dvtsid is %l0d\n", dwtsid);
errno - 0;
dvtspage calc page(dwtssize);

dwts : (float *) shmat(dwtsid, dwtspage, 0);
if (errno >0)
fprintf(stderr, "Zs\n", sys errlist[errnol);
errno . 0;

for(i -0; i< (nunits +totnum); i++)
dvts[iJ - 0.0;

dbias -&lumpedll4*nunits];
1* dbias - (float *) emalloc((unsigned)(sizeof(float) *nunits));

(void) install-var("dbias", Vfloat,(int *) dbias,
nunits, 0, SETSVMENU);

1*for (i - 0; i < nunits; i++)
dbias[i] - 0.0; */

/* misc array for shinem flags *
errno - 0;

miscsize - (unsigned)(sizeof(ilt) * 15);
miscid - shuget(0, miscsize, O6661IPCQCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Zs\n", errno,

sys -errlistlerrnoJ);
printf("miscid is Xl0d\n", miscid);

errno - 0;
miscpage - caic_page(miscsize);

misc - (mnt *) shmat(miscid, miscpage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys -errlistlerrnol);

(void) install var("patno", Int,(int *) & misc[7j, 0, 0,

SETSVI4ENU);

for (i - 0; i <12; i++)

IV* 258



miseli] - 0;
errno - 0;

/*veight "s" array defined first *

wtsssize - (unsigned)(sizeof(float) *(nunits + totnum));
wtssid - shmget(0, wtsssize, 0666 IIPCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Xs\n", errno,
sys_errlistjerrnoj);
printf("wtssid is %10d\n", wtssid);
errno - 0;
vtsspage = caic page(wtsssize);

wtss . (float *) shmat(vtssid, wtsspage, 0);
if (errno >0)
fprintf(stderr, "Zs\n", sys_errlist[errnoj);
errno a 0;

/* now wed "s" array defined*/
vdssize - (unsigned)(sizeof(float) *(nunits + totnum));
wdsid - shmget(0, wdssize, 066611PC CREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Zs\n", errno,
sys_errlist~errnoj);
printf("wdsid is Xl0d\n", wdsid);
errno -0;
wdspage = caic_page(wdssize);

wds - (float *) shmat(wdsid, wdspage, 0);
if (errno >0)
fprintf(stderr, "Xs\n", sys_errlistlerrnoJ);
errno -0;

1* now get contents of wed and weight "s" arrays and put them into
shemem wed and wts arrays *
shwt - &wtss[0J;
shwi - &wds[OJ;
for(i 0; i< nunits; i++)f

wt - weight[iJ;
wi = vedli];
wtend - wt + num -weights_toli];
for(; wt < wtend;)
*shwt++ - vt=
*shwi++ - vi=

) /*end wt for*/

)/*end for*/

/* now attach proper addresses to wed, weight and dweight "r" arrays
to
access repsective "s" arrays*/

259



totnum - 0;
for(i - 0; i <nunits; i++)

if(num weights_to[iJ t-0)(
weight[ij - &wtss[totnumj;
wedli] - &wds[totnum];

dweight[i] - &dwts[totnum];

totnum += num -weights_toli];
) * end if *

1/* end for */

System_-Defined = TRUE;
return(TRUE);

float logistic (x)
float x;

double exp 0

*ifdef MSDOS
/* we are conservative under msdos to avoid potential underfiow

problems that may arise from returning extremal values -- jim *
if (x > 11.5129)
return( .99999);
else
If (x < -11.5129)

return( .00001);
#else
1* .99999988 is very close to the largest single precis value

that is resolvably less than 1.0 -- jim *
if (x > 16.0)

return( .99999988);
else
if (x < -16.0)

return( .00000012);
#endif

else
return(1.0 / (1.0 + (float) exp( (double) ((-1.0) x)))

mnit_output()
register mnt i,j;
register float *sender, *wt, *end;
float net;

/* initializes the network to asymptotic outputs given 0 input *

cycleno - 0;

260



for (i . ninputs; I < nunits; i++) (1* to this unit *
net - biasli i;
sender . &activation[first-weight_to[iII;
vt - weight[i];
end - sender + fu,_weights toli];
for (j - first -wvight_toliT; J < ninputs; J++)(

sender++; wt++; /* step over input units to
initialize to all-zero input case *

for (; sender < end ; (*from this unit *
net += (*sender++) * (v+)

netinputfi] -net;
lumped[iJ - activation~il = (float) logistic(net);

if (step_size < PATTERN)
update-displayo;
if (single_flag)(

if (contin-test() .. BREAK) return (BREAK);

if (Interrupt)
Interrupt_flag - 0;
update_displayo;
if (contin-test() -= BREAK) return (BREAK);

return(CONTINUE);

cycle()
register mnt i,cy;
register float *sender,*wt,*end;
float newinput;

for (cy . 0; cy < ncycles; cy++)(
cycleno++;
for (i aninputs; i < nunits; i++) (*to this unit *

newinput . bias[iJ;
sender - &activation[first -weight_to[il];
end -sender + num-weights toji];
wt v eight[iJ;
for (;sender<end;) (/* from this unit *
newinput +. (*sender++) * (v+)

netinput[iJ - crate * newinput + drate *netinput[iJ;
activationji] - (float) logistic(netinput[iJ);

if (step_size -- CYCLE)(
update displayo;
if (single_flag)(
if (contin-test() .. BREAK) return (BREAK);

261



if (Interrupt)(
update_displayo;
Interrupt-flag - 0;
if (contin-test() .. BREAK) return (BREAK);

if (step-size -. NCYCLES)
update_displayo;
I
return(CONTINJE);

compute output()
register int i;
float *sender, *wt, *end;
float net;
coinpout2flag - 0;
for (i = ninputs; i < nunits; i++) II/* to this unit *
net = biaslil;
sender -&activationlfirst -weight_toli]];

end -sender + num-weights_toli];
wt = weight[iJ;
for (; sender < end ;

net .+= (*sender++)*(*wt++); /* from this unit *
netinputjij - net;

activationlil .(float) (1.0 / (1.0 + (float) exp( (double) ((-1.0)*
net))));

I
compout2flag - 1;

compute_error()
register int i,j;
float *wt, *sender, *end;
float del;

comperrorflagl = 0;
comperrorflag2 - 0;

for (i - ninputs; i < nunits -noutputs; i++)
errorli] = 0.0;

while( Icompout2flag);
compout2flag - 0;
for (i~nunits-noutputs, J-0; i < nunits ; j++, i++)[

if(target[jJ >- 0) /* We care about this one*/
errorlij= target~j] - activationji);

else
errorli] =0.0;

comperrorflagl =1

262



for (i. nunits - 1; 1 >. ninputs; i--)(

delv~In~ a elta~iJ errorl * activation[iJ (1.0 -

if (first-weight_toji] + num-weights_toliJ < ninputs) continue;
/* no point in propagating error back to input units *
sender = &errorifirst-weight-tofiji;
end sender + num-weights_toli];
wt v eight~i];
for (;sender < end;)

*sender++ +. del *w+)

comperrorflag2 =1;

compute wed()
register int i;
float *wi, *sender, *end;
float del;
compwedflag2 -0;

while (!comperrorflag2);
comperrorflag2 - 0;

for (i -ninputs; i < nunits; i++)
sender --&activation[first weight_toti]];
end -sender + num-weights-to[i];
del - deltaji];
wi = wedli];
for (;sender < end;)

v += + del *(*sender++);

if( i <.(nunits -1)) conipwedflagl =1;

compwedflag2 =1;

clear wed()
register int ij,num;
register float *wi, *end;

for (i =ninputs; i < nunits; i++)f
bedli] 0.0;
wi = ved[iJ;
end wi + num-weights_to[i];
for (; i < end;)

=w+ 0.0;

change -veights()
register int i;

263



register float *vt, *dvt, *epj, *vi, *end;

/*vhile( Icompvedflag2);
compvedflag2 - 0; */

1*link-sum();*/
for (i - ninputs; i < nunits; i++)

vhile( Icompwedflagl && I compvedflag2);
compvedflagl - 0;
dbias[i] = rate*delta[iI, momentum *dbias[iJ; /*Irate vs

bepsilon
deltal il*/

biaslil + dbias[i];
vt - veighti;
dvt'= dveightli];
vi - edli];
end =Vt + num veights_toli);
for (;vt < end; ) [

*dwt l rate * (*vi) + momentum *(*dwt); /*Irate vs (*epi++)

*vt+q +~= *dwt++;
=v+ 0.0;

/* pos-neg-constraintso;*/

float p_css -(float) 0.0;
float css - (float) 0.0;

change-weights follov()
register it i;
register float *wt, *dwt, *epi, *vi, *end, *pvi;
float tb, dp, den;

p_css = css;
css =0.0;

dp =0.0;

link-sumo;

for (i - ninputs; i < nunits; i++)(
tb = bedli];

dbiasli] = tb*bepsilon[il + momentum * dbias[i];
bias[iJ += dbias[i];
css +- ((double) tb)*((double) tb);
dp += ((double) tb)*((double) pbed[iJ);
pbed~iJ tb;
bed[iJ 0.0;
wt - veight~iJ;
dvt. dveight~iJ;

264



wi - vedji];
pvi - pvedlil;
epi - epsilonji);
end . wt + num -weights_tolil;
for 0; vt < end; ) [

*dvt - (*epi++)*(*vi) + momentumi * (*dvt);
*v+ . dt+

css +- ((double) (*vi))*((double) (*wi));
dp +. ((double) (*vi))*((double) (*pvi));
*pTvj++~ *wi;

* =+ 0.0;

den . p-css * ss;
if (den > 0.0) gcor -dp/(sqrt(den));
else gcor = 0.0;

pos-neg_constraintso;

constrain-veights()
pos_neg_constraintso;
link-constraintso;

pos_neg-constraints()
float **fpt;

for (fpt - positive -constraints; fpt &&*fpt; fpt++)
if (**fpt < 0.0)

**fpt - 0.0;

for (fpt - negative constraints; fpt &&*fpt; fpt++)
if (**fpt > 0.0)

**fpt - 0.0;

link-constraints()
register mnt idj;
float t;

for (i - 0; i < nlinks; i++)
t = *constraints~iJ.cvec(0J;
for (j - 1; j < constraintsjiJ.num; J++)

*ccnstraintstil.cvectjj - t

link-suni)

265



register mnt i'j;
float ss;

for (i - 0; i < nlinks; i++)
ss - 0.0;
for (j - 0; j < constraintslil.nun; J++) (

ss += *constraints[iI.ivec~jJ;

for (j = 0; j < corstraintsfiJ.num; j++) (
*constraints[i].ivec[jJ . ss;

setinput()
register int i,prev_index;
register float *pp;

for (i - 0, pp -ipatternlpatnol; i < ninputs; i++, pp++)(
activationliJ = *pp;

I

strcpy(cpname,pname[patno I);

settarget()
register mnt i;
register float *pp;

for (i - 0, pp - tpattern~patno]; i < noutputs; i++, pp++)
targetlil .*pp;
if (target~iJ - 1.0)

targct[i] tmax;

else if(target[iJ - 0.0)(
target~iJ 1 - tmax;

setup_pattern()
setinputo;
set target 0;

tallcompute -error()
register mnt i, J;
float *vt, *sender, *end;
float del;

for (i - ninputs; i < nunits -noutputs; i++)(
error[iJ - 0.0;

266



for (i-nunits-noutputs, j - 0; i < nunits ; J++, i++)(
if(target[jJ >. 0) /* We care about this one*/

errorji)= targetij] - activationfiJ;
else

errorli] 0.0;

for (i. nunits -1; i >. ninputs; i--)
del -delta~i] errorli]* activation[i] * (1.0 - activation[iJ);
if (first-weight_toji] + num-weights to[iJ < ninputs) continue;
/* no point in propagating error back to input units *

sender - &error[first -weight_toliji;
end =sender + nuw _weights-to[ij;
vt v eight[i];
for (;sender < end;)(

*sender++ +. del *v+)

talltrial()(

setup_patterno;
if (cascade)(
if (mnit_output() =. BREAK) return (BREAK);
if (cycle() -= BREAK) return (BREAK);

else(
compute-outputo;
if (step-size < PATTERN)

update-displayo;
if (single_flag)(

if (contin test()o BREAK) return(BREAK);
) * end single *

) * end stepsize *

) * end else */
tailcompute error();

comperrorflagl =; 1;
sumstatso;
return (CONTINUE);

) * end of talltrial*/

trial() (

if (!forkflag)(
forkf lag = 1;
errno - 0;
pid - forko;
if (errno >0)

fprintf(fp, "Trouble with fork, errno .%3d: Xs\n", errno,
sys_errlist~errnoj);

267



if(pid .. 0)
errno . 0;
function - mpadvise(MPACPUSET, 4);
if(errno > 0)
fprintf(stderr, "At 2nd proc call errno is %3d, vhich means Zs\n",
errno, sys_errlistlerrnoJ);
errno - 0;
forkagain:
if (donef lag) (

forkf lag - 0;
exit(O);

compute_error();

change veights();
vhile(T!parent flag);
parentflag - 0;

goto forkagain;

) /*end of pid eq 0 *
if(pid 1. 0) return;
) /* end of train *

sumstats() (
register mnt i,J;
register float t;
pss - 0.0;

vhile( lcomperrorflagl);
comperrorflagl - 0;

for (j -0,1 -nunits -noutputs; i <nunits; i++,J++)
if (target[j] >. 0)

t - error[iJ;
pss +. t*t;

tss +. pss;

ptrain()
return( train( 'p'));

strain()
return(train('s'));

train(c) char c;(
int t,i,old,npat;
char *str;
parentflag - 0;

268



doneflag - 0;
forkf lag - 0;

if (!SystemDefined)
if (Idefine systemo)

return(BREAK);

/* in case prey epoch was terminated early we clear the weds and
beds */

clear-vedo;
cycleno =0;

for (t =0; t < nepochs; t++)
epochno++;
for (i = 0; i < npatterns; i++)

used[i] -=
if (c -= 'p') I

for (i .0; 1 < npatterns; i++)(
npat - rnd() * (npatterns - i) i;
old = used[iJ;
usedti] - used[npatJ;
used~npatJ . old;

tss . 0.0;

for (i =0; i < npatterns; i++)(
patno -usedli];

if( Iforkf lag) (
set input 0;
set target 0;

trial();
) * end of forkf lag *

compute_outputo;
sums tatso;
if(lflag) [
compute -wed();

if (i I. (npatterns -1))(
patno - usedti+1];
setinputo;
set target();
parentflag -1;

) * end of i not eq last pattern *

/ * end of lf lag */
1* if (step_size -- PATTERN)(

update -displayo;
if (single flag)

if (contin test()o BREAK) return(BREAK);
)end of single flag

)end of PATTERN

269



) * end of npatterns for loop*/
if (tss < ecrit) break;

if (t1. (nepochs - 1)
patno - used [0];
setinput();
set target();
parentflag - 1;
/ * end of t ne loop *

if (Interrupt) [
Interrupt_flag - 0;
update displayo;
if (contin-test() - BREAK) return(BREAK);

if (step-size .. EPOCH) / * defined as 4*/
update-displayo;
if (single flag)(

If (contin test() .. BREAK) return(BREAK);
)/*end of single flag*/

) * end of EPOCH */
) * end of nepochs for loop *

doneflag = 1;
parentflag - 1;
if (step_size .. NEPOCBS) ( * defined as 5 *

update_displayo;

return(CONTINUE);

talltrain()
int t,i,old,npat;
char *str;

if (ISystemDefined)
if (!define systemo)

return(BREAK);
/* in case prey epoch was terminated early we clear the weds and

beds */
cycleno - 0;

tss = 0.0;
for (i - 0; i < npatterns; i++)(
patno - usedlj -=

if(talltrial() .. BREAK) return(BREAK);

if (step-size .. PATTERN)(
update_displayo;
if (single flag)(

270



if (contintest() .. BREAK) return(BREAK);
)

)
if (Interrupt) (
Interrupt_flag = 0;
update_displayo;
if (contintest() -= BREAK) return(BREAK);

I
) /* end of npatterns for loop*/

return(CONTINUE);
) /* end of talltrain */

tall() [
int save_iflag;
int save_single_flag;
int savenepochs;
int save stepsize;

save iflag = iflag; iflag = 0;
savesingle_flag . singleflag;
if (in stream -- stdin) singleflag = 1;
save_step_size = stepsize;
if (step_size > PATTERN) stepsize = PATTERN;

save nepochs - nepochs; nepochs 1;
tallflag = 1;
talltraino;

tallflag - 0;
iflag - save_iflag;
nepochs = savenepochs;
single-flag = save single_flag;
stepsize = savestep_size;
return(CONTINUE);

test_pattern() (
char *str;
int save_singleflag;
int save_step_slze;

if (ISystemDefined)
if (Idefinesystemo)

return(BREAK);

tss = 0.0;

str = get_command("Test which pattern? ");

if(str .= NULL) return(CONTINUE);
if ((patno = get_patternnumber(str)) < 0) 0

return(put_error("Invalid pattern specification."));
2

271



if (cascade)f
save -single -flag - single -flag; single flag -1

save -step_size - step_size; step size -CYCLE;

talitrial();
update -displayo;
if (cascade) [
single Iflag - save_single-flag;
step_size - save_step_size;

return(CONTINUE);

nevstart()
random seed - rando;
reset-weightso;

reset weights()
register mnt i,j,k,first,num;
char ch;

epochno - 0;
pss = tss = gcor - 0.0;
cpname[Ol - \=
srand(random-seed);

if (ISystem Defined)
if (!define systemo)

return(BREAK);

for (j - 0, k -3*nunits; j < nunits; J++, k++)(
first . first-weight to~j];
num - num_weights_tolil;
for (i = 0; i < num; i++)(

wedlillil - dweight[j][iJ - 0.0;
if (pwed) pwedljlliJ 0.0;
ch -wchar~jJ[iJ;
if (isupper(ch)) ch =tolower(ch);

if (ch -='.') (
weightij]i] = 0.0;

else(
if (constants[ch - 'a'J.random)(

if (constantsfch - 'a'J.positive)
weight[j J[i] . wrange * rnd();

else
if (constants[ch - a'J.negative)(

weight[j][iJ a range * (rnd()- )

272



else
veight[J[iJ - wrange * (rnd() -.5);

1
else

veight[jJ[i] - constants[ch - a'J.value;

bed[jJ . dbias~j] 0 .0;
if (pbed) pbedjj] -0.0;
ch - bchar[jJ;
if (isupper(ch)) ch -tolover(ch);
if (ch == 0.') (

biaslil - 0;

else(
if (constants[ch - 'a'.J.randoi)

if (constants[ch - 'a'].positive)
biaslil wrange *rndo;

else
if (constantsjch - a'J.negative)

bias[jl - wrange * (rnd() - 1);

else
biasiji - wrange * (rnd() -.5);

)
else(

biasli] - constants[ch - 'a'J.value;

constrain-veights();

for (i -0, j - 4*nunits; i < noutputs; i++, J++)(
lumped[j] - targetlil - 0.0;

for (i - 0; 1 < nunits; i++)
netinput[iJ - activation[i] - delta[iJ error[iJ 0.0;

for (i - 0; 1 < 3*nunits; i++)
lumpedli] . 0.0;

update_displayo;
return(CONTINUE);

set lgrain()
char old_grain_string[STRINGLENGTHJ;
struct Variable *vp, *lookup_varo;

strcpy(old_grain_string,grain_string);

273



vp - lookup_var("lgrain");
change-variable("lgrain" ,vp);

if(startsanae(grain_string,"epoch"))strcpy(grain string,"epoch"');
else if (startsame(grain-string,"pattern"))

strcpy(grain-string,"pattern");
else (
strcpy(grain_string,old_grain_string);
return(put-error("urecognized grain -- not changed."));

return(CONTINUE);

set follow-uiode()
struct Variable *vp, *lookup_var();
int pv, i, j;
pv -follow;

vp =lookup_var('"follow"');
change-variable("lfollov" ,vp);

if (follow .. 0) return (CONTINUE);
if (pwed -- NULL) (
pved -((f loat **) emalloc((unsigned) (sizeof (f loat *)*nuni ts)));
(void) install-var("pved", PVveight,(int *) pwed, nunits,

nunits, NOMENU);
for (i -0; i < nunits; i+.+){

pwedli] - ((float *)
eualloc((unsigned)(sizeof(float)*nuni-weights_tot i])));

pbed -((float *) emalloc ((unsigned) (sizeof (float) *nunits)));

(void) install-var("pbed", Vfloat,(int *) pbed,
nunits, 0, NOMENU);

if (pv -= 0)(
for (i - 0; i < nunits; i++)
for (j - 0; j < nurn weights_to[iJ; J++)

pwedliJ[jJ = 0.0;

for (i - 0; 1 < nunits; i++)
pbedfil 0.0;

gcor - css = 0.0;
return(CONTINUE);

change_crate()
struct Variable *varp;

274



if ((warp = lookupvar("crate")) Is- NULL) {
changevariable'"crate",(int *) varp)

)
else (
return(put_error("crate is not defined"));

I
drate = 1 - crate;
return(CONTINUE);

init weights() (
int define bp networko;
(void) installcommand("network". define_bp_network,G0TMENU,(int

NULL);
(void) installcommand("weights", readweights, GETMENU,(int *)

NULL);
(void) installcommand("weights", writeweights, SAVEMENU,(int *)

NULL);
(void) installvar("nunits", Int,(int *) & nunits, 0, 0,

SETCONFMENU);
(void) installvar("ninputs", Int,(int *) & ninputs, 0, 0,

SETCONFMENU);
(void) installvar("noutputs", Int,(int *) & noutputs, 0, 0,

SETCONFMENU);
(void) installvar("vrange",Float,(int *) &wrange,0,0,

SETPARAMMENU);
)

WTSH.C

/* file: veights.c MODIFIED FOR HYBRID TO wtsh.c

read in network descriptions, and set up constraints.
First version implemented by Elliot Jaffe.
Date of last revision: 8-12-87/JLM.

HYBRID MODIFIED Masscomp revisions */

/* the following is the form for network description files.

definitions:
nunits <int>
ninputs <int>
noutputs <int>
maxconstraints <int>
constraints:
<char> <float> or <char> [random positive negative linked]

end

275



network:
<strings of . and chars as defined in definitions:>
end
biases:
<a single line of . and chars as biases for units>
end
sigmas:
<a single line of .'s and chars specifying sigmas -- harmony theory
only>
end
<EOF>
*/

#include "general.h"
#include "command.h"
#include "1wtsh.h"
tinclude "variable.h"

float **weight - NULL;
char **vchar; /* pointers to vectors of chars

that are used in resetting weights*/
float *bias = NULL;
char *bchar; /* like wchar *1
float **epsilon;
float *bepsilon - NULL; /* thresh epsilon array */
float **wed NULL;
float *bed = NULL;
float *sigma - NULL; /* strength parameter for knowledge atoms */

struct constants constants[26];

float **positive constraints;
float **negative constraints;
/* Array of struct constraint, for keeping links together */

struct constraint *constraints = NULL;

float Irate = 0.5;

float wrange = 1;

int nunits = 0;

int ninputs 0;
int noutputs = 0;
int maxpos = MAXCONSTRAINTS;
int maxneg = MAXCONSTRAINTS;
int nlinks - 0;
static nposconstr = 0;
static nnegconstr - 0;
int epsilon menu - SETWTMENU;
char netdescr_name[BUFSIZ];

276



int lumpid, lumppage; /* added for shared mem 11 apr 89 bb *
unsigned lumps ize;
float *lumped - NULL;

int fnvtid, fnwtpage;
unsigned fnwtsize;
int *fnvt - NULL;

int wtvedid, wtwedpage;
unsigned vtvedsize;
float **wtwed - NULL;

int bp; /* TRUE if program is bp *

#~ define ENLARGE POS -1
# define ENLARGENEC -2

define_bp-netvork()
bp = 1;
define-neto;

define network()
6bp = 0;
define-net();

define net()
char *sp;
char string[BUFSIZJ;
FILE * sv instream;
struct Variable *lookup_var 0
int
boolean defined-weights - FALSE;

sv -instream - in-stream;
sp -get comand("filenaie for network description:")
if (sp ;- NULL) return(CONTINUE);
strcpy(net_descr_name,sp);

if ((in stream - fopen(sp, "r")) .- NULL)
in -stream - sv instream;
return(put_error("Can't open network file."));

nlinks - 0;

for (i - 0; 1 < 26; 1++i)
constants[i].random - FALSE;
constantslil.positive - FALSE;
constants(iJ.negative - FALSE;

277



constantsliJ.link - FALSE;
constants[i].value - 0.0;

)osat[r alrno RE

constants['r' - 'a'J.random - TRUE;

constantsll - 'a'j.positive - TRUE;
constants['n' - 'a'J.random -TRUE;
constantsl'n' - 'a'1.negative - TRUE;

while (fscanf(in stream, "Ws, string) I. EOF)(
if (!strcmp(strilng, "definitions:")) (

if (read definitlons() -- BREAK) (
felose(in stream); in-stream - sv-instream;

return(BREAK);

else
if (!strcmp(string, I1c.instraints:"))
if (read constraints(constants) ur. BREAK)(

fcJfose(in stream); in-stream - sv-instrean;
return(BREAK);

j

else
if (!strcmp(string, "network:"))
defined weights . read network(constants);
if (Idefined -weights) T
if (put error(err string) .. BREAK)(

fclose(in stream); in-stream -n sv-instream;
return(BREAK);

else
if (!strcmp(string, "biases:"))
if (read biases(constants) .. BREAK)

fclose(in stream); in-stream - sv-instream;
return(BREAK);,

eleif (!strcmp(string, "sigmas:"))
if (read sigmas(constants) u BREAK)(

fclose(in stream); in-stream =sv instream;
return(BREAK);

else
if (Istrcmp(string, "end"))
/* just skip over It */

278



else(
sprintf(err -string,

"error reading network file: I don't understand
ZsWn",string);

if (put-error(err-string) .= BREAK)(
fclose(in stream); in-stream -sv-instream;
return(BREAK);

fclose(in stream);
in-stream = sv instream;
if (nlinks)
constrain weightso;
return(CONTINUE);

read definitions()
char string[BUFSIZJ;
struct Variable *varp,

*lookup-var 0

while (fscanf(in Istream, "Ws", string) I- EOF)(
if (!strcmp(string, "end"))

return(CONTINUE);
if ((varp . lookup var(string)) I. NULL)(

change_variable(string,(int *) varp);

else
sprintf(err string,

"Error: unknown variable in network file, %s\n", string);
return(put-error(err_string));

read network(con)
struct constants *f--on;

mnt i,r,s,block,since_first,last -weight to,tempint;
mnt rstart,rnum,rend,sstart,snum,send,con-index;
char ch,all ch,*strp;
char string[BtJFSIZJ;
int needline . 1;
float *tmp; char *ctmp;

(void) srand(random-seed);

1* activation, bias, target, error, delta arrays lumped here in shared

279



memory */
errno - 0;

lumpsize - (unsigned)(sizeof(float) *(7*nunits + noutputs));
lumpid - shinget(0, lumpsize, 066611PCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Zs\n", errno,
sys errlistjerrno]);
printf("'lumpid is %l0d\n", lumpid);
errno - 0;
lumppage = calc_page(lumpsize);

lumped = (float *) shmat(lumpid, lumppage, 0);
if (errno >0)
fprintf(stderr, "%s\n", sys_errlist[errno]);
for (i = 0; i <6*nunits + noutputs; i++)

lumped~iJ - 0.0;
errno = 0;

1* weight and wed "r" arrays for shared memory *
wtwedsize -(unsigned)(sizeof(float *) *(3*nunits));
wtwedid - shmget(0, wtwedsize, 06661IPCCREAT);

if (errno >0)
fprintf(stderr, "errno is X3d, which means Zs\n", errno,
sys errlist[errnoJ);
printf("wtwedid is %l0d\n", wtwedid);
errno - 0;
wtwedpage - caic_page(wtwedsize);
wtwed =(float **) shmat(wtwedid, wtwedpage, 0);
if (errno >0)
fprintf(stderr, "Zs\n", sys-errlist[errno]);
errno =0;

weight =&wtwed[01;

1* weight =((float**) emalloc((unsigied int)(sizeof(float *
nunits))); *

epsilon =((float **) emalloc((unsigned int)(sizeof(float*)*
nunits));

wchar .((char **) emalloc((unsigned int)(sizeof(char *
nunits)));

fnwtsize -(unsigned)(sizeof(int *) *(2*nunlts));
fnwtid - shmget(0, fnwtsize, 06661IPCCREAT);

if (errno >0)
fprintf(stderr, "errno is %3d, which means Zs\n", errno,
sys errlistterrno]);
printf("fnwtid is %l0d\n", fnwtid);
errno = 0;
fnwtpage = calc_page(fnwtsize);
fnwt = (mt *) shmat(fnwtid, fnwtpage, 0);

if (errno >0)

280



fprintf(stderr, "Xs\n", syserrlistlerrnol);

errno . 0;

first -weight_to - &fnvt[OJ;
/*first weight_to . (int *) emalloc((unsigned int)(sizeof(int)*
nunits)); */

1*for (r = 0; r < nunits; r++)
first-weight_toir] - nunits;

nuin- weights_to - &fnwt[nunits];
/*iiuinweights to - (mnt *) emalloc((unsigned int)(sizeof(int)*

nunits)); */

for (r - 0; r < nunits; r++)(
num weights_toiri = 0;

first-weight_to[r] - nunits;

(void) install1-var("weight",1'Vweight, (int *) weight,nunits,nunits,
SETWTMENU);

(void) install-var("epsilon", PVwaight,(int *) epsilon, nunits,
nuni ts,

epsilon-menu);
if (bp)

wed = &wtwed[nunits];
1* wed -((float**) emalloc((unsigned int)(sizeof(float *

nunits))); */
(void) install-var("wed",PVweight,(int *) ved,nunits,nunits,

SETSVMENU);

rstart =0; rend =nunits -1; sstart -0; send - nunits -1;
for (block - 0; ;block++)(

gbagain:
if (fscanf(in stream,"%s",string) -= OF)[

sprintf(err string,"error in network description");
return(FALSE);

if (strcnip("end",string) .. 0)(
if (block) return(TRUE);

else (
sprintf(err-string,"error in network description");

return(FALSE);

all ch - \1
if (string[j .. '%')(

fscanf(in stream,"Zd~d~d~d",&rstart,&rnum,&sstart,&snum);
rend - rstart + mnum -1;

281



send . sstart + snum -1;
if (string[1]) (

all-ch - stringti];

else
if (!block)(

needline = 0;

else(
sprintf(err_string,"error in network description");
return(FALSE);

for (r -rstart; r <= rend; r++)(
if (!all ch) [
if (needline)(

if (fscanf(in -streain,"Zs",string) .= EOF)
sprintf(err_string,"not enough units in network

description");
return(FALSE);

else needline = 1;

else(
for (s - 0; s < snum; s++) stringis) - all-ch;
stringis]- \;

first weight_to[rJ - sstart;
last Tweight_to - send;
num weights toir] - 1 + last-weight_to -first-weight_toir];

weightirT - ((float *)
emalloc ((unsigned int)(sizeof(float) *num-weights_to[r])));

epsilonfr) - ((float *)
emalloc ((unsigned int)(sizeof(float) *

nunt-eights_toirD)));

wchar[rJ - ((char *)
einalloc ((unsigned int)(sizeof(char) *

num-weights toir])));
if (bp) [

wed[rJ - ((float *
emalloc ((unsigned int)(sizeof(float) * num-weights_tolr])));

weightlr] Is] 5 .0;
epsilon~rJ[sJ 0.0;

wcharlr][sJ - 11

4. 282



if (bp) ved[r][sJ 0.0;

for (strp - string,s -sstart,since-first - 0; s <. send; s++)

/* loop over the from units *
ch - *strp++;
vcharjrJ[since first] - ch;
if (ch -- '.)
since-first++;

else(
/* first check if this is realy a character *
if (!isalpha(ch)) (

sprintf(err string,"1non_alpha character in network");
return(FALS'E);

/* upper c~se means this weight is non-changable *
if (isupper(ch)) (
1* make it lover case *

ch . tolover(ch);
epsilon[r][since first] - 0;

else(
epsilonfr][since_firstJ - Irate;

/* now set up the char based on the stored con definitions *
if (conich - 'a'].random) (

if (conich - 'a'J.positive) (
if (nposconstr >. maxpos) (

enlarge_constraints(ENLARGEPOS);

weight[rJ[since first] . vrange * rndo;
positive Tconstraintsinposconstr++J

&veight[r][since_first];

else
if (conich - 'a'].negative)

if (nnegconstr >. maxneg)(
enlarge constraints(ENLARGENEG);

veightir][since first] =

vrange * (rnd() - 1);
negative-constraintslnnegconstr++J

&veight[rJ[since_first];

else
veightlr][since_first] - vrange * (rnd() -.5);

283



else(
veight[rJ [since_first] - con[ch - 'a'].value;

if (conich - 'a'].link)(
con index - (con[ch - a'J.link - 1);
if (constraints[con-indexj.num >.

constraintsicon_index].max) [
enlarge_constraints(con index);

tempint = constraints[con_index.nui;
constraintslcon-index] .cvec[tenipint]

- &veight[r][since-first];

if (bp) [
constraints[con index]. iveci tempint]

&ved[rJ[since-first];

tempint - constraints[con indexj.nui + 1;
constraints[con-indexJ.num -tenipint;
/* this kludge (tempint) is for the MS compiler *

since first++;

read biases(con)
struct constants *con;

mnt j,rstart,rend,rnum,block,con-index,tempint;
char ch,all ch,*strp;
char stringIBUPSIZ];

bias - &lumped[3*nunits];
/*bias - (float *) emalloc( (unsigned int)(sizeof (float) *nunits));*/

(void) install-var("bias", Vfloat,(int *) bias, nunits, 0,
SETWTKENU);

bepsilon - (float *) emalloc((unsigned int)(sizeof(float)*
nunits));

(void) ins tall var("bepsilon", Vfloat,(int *) bepsilon, nunits, 0,

epsilon menu);
bchar . (char *)emalloc((unsigned int)(sizeof(char) *nunits));

if (bp) (
bed = (float *)emalloc((unsigned int)(sizeof (float) *nunits));

284



(void) install var("bed", Vfloat,(int *
bed,nunits,O,SETSVMENU);

for (j - 0; j < nunits; J++)
bias[jJ - 0.0;
bepsilonhi] - 0;
bchariji = 11
if (bp) bedj - 0.0;

rstart - 0; rend - nunits -1;
for (block - 0; ; block++)(

gtagain:
if (fscanf(in-streaiu,"Zs",string) mmEOF)(

return(put_error("problem in bias description"));

if (strcmp(string,"end") .= 0)
if (block) return (CONTINUE);
else return(put-error("problem in bias description"));

if (string[Ol m] ~
fscanf(in stream,"Zd~d",&rstart,&rnum);

rend = rstart + mnum -1;
if (string[1J I. 1\0')(

all -ch - string[lJ;
for (j - 0; j < mnum; J++)
string[jJ - all-ch;

string[j] - \m

else goto gtagain;

for (strp - string, j -rstart; j <. rend; J++, strp++)
ch = *strp;
bcharj - ch;
if (ch -- '.') (

bias[jJ - 0;
bepsilonli] - 0;

else(
/* first check if this is mealy a character *

if (!isalpha(ch)) {
return(put-ermor("non_alpha character in bias"));

/* upper case means this weight is non-changable *
if (isupper(ch)) [
/* make it lover case *

ch - tolover(ch);
bepsilon[jJ - 0

285



else(
bepsilon~i] l rate;

/* nov set up the char based on the stored con definitions *
if (conich - 'a'J.random) [

if (conich -'all-positive) (
biasli] v range * rndo;
if (nposconstr >. maxpos) [

enlarge_constraints(ENLARGEPOS);

positive-constraints[nposconstr++J - &biastj 1;

else
if (conIch - a'].negative)(

biasij] v range * (rnd() 1);
if (nnegconstr >. maxneg)(
enlarge-constraints(ENLARGENEC);

negative_constraints[nnegconstr++J &bias[j 1;

else
biaslj] - wrange * (rnd() -.5);

else
biaslI] . conIch - 'a'I.value;

if (con[ch - 'a'J.link)(
con index - (con[ch - 'a'J.link - 1);
if (constraints[con index].num >.

constraints[con indexJ.max)(
enlarge_constraints(con_index);

tempint - constraints[con -indexJ-num;
constraints[con index].cvec[tempintJ &bias[jJ;
if (bp) constraints~con_indexJ.ivec[tempint] -&bed[jJ;

cons traints[con_index] .num++;

read sigmas(con) struct constants *con;
nt J

char cb, all ch, *strp;
char string[BUPSIZ];
int rstart, rend, mnum, block;

sigma - (float *) emalloc( (unsigned int)(sizeof (float) *nunits));

for (j - 0; j < nunits; J++) (

286



sigma[j] - 1.0; /* default sigma is 1.0 */
)
(void) install var("sigma", Vfloat,(int *) sigma, nunits, 0,

SETVTMENU);
rstart - 0; rend - nunits -1;

for (block = 0; ; block++) (
gsagain:

if (fs,.anf(instream, "Zs", string) MM EOF) f
return(put_error("problem in sigma description"));

}
if (strcmp(string,"end") .= 0) 0

if (block) return (CONTINUE);
else return(put_error("problem in sigma description"));

}
if (string[O] -= 'Z') (

fscanf(instream,"Zd~d",&rstart,&rnum);
rend = rstart + mum -1;
if (string[l] I. '\0') (

all ch = string[l];
for (j = 0; j < rnum; J++) [
string[j] - all-ch;I

string[j] - '\0';
)
else goto gsagain;

}
for (strp - string, j = rstart; j <= rend; j++, strp++) (
ch = *strp;
if (ch -= '') [
sigma[jl = 1.0;

}
else (
/* first check if this is really a character *l

if (lisalpha(ch)) [
return(puterror("non_alpha character in bias"));

}
if (isupper(ch)) [
/* make it lover case */

ch = tolover(ch);
)
sigma[jJ - con[ch - 'a'J.value;
if (sigmajj] < 0) (
return(puterror("can't set sigma less than 0!"));

}
}

read constraints(con)
struct constants *con;

287



char ch;
f loat fit;
int isfilt;
char string[BUFSIZJ;
char str[51[30];
int i,j,ch_mnd;
int nstr;

while (fgets(string, BUFSIZ, in stream) I. NULL)(
if (string[0J . NULL 11 string[0I -- \n') {

if (fgets(string, IsUFSIZ, in-stream) .. NULL)(
break;

if (strncmp(string,"end",3) .. 0) break;

ch - \1

for (i - 0; i < 5; i++) strfi][O]-1\1

(void) sscanf(string, "%c Zs %s Xs Zs Xs",
&ch, str[0], str[i], str[2], str[3], str[4]);

ch = (isupper(ch)) ? tolover(ch) : ch;
ch imd = ch - 'a';

conlch mndl.random = conich_indj.positive =

con~ch indj.negative - con[ch_ind].lmnk a FALSE;
conIch indj].value -0.0;
for (i -0; (i < 5) && (str~i][0 I 1 \0'); i++)

if ((Isflt . sscanf(str[ijJ,"Xf"I,&flt)) - 1)
conich-mndj.value - fit;

else
if (startsame(str[i), "random"))

con[ch-ind].random - TRUE;
else
if (startsame(str[i], "positive"))

conich_mndl.positive -TRUE;
else
if (startsame(str[i], "negative"))

conrch-ind]-negative - TRUE;
else
if (startsame(str~il, "linked"))

con[ch-indJ-link = ++nlinks;
else [

sprintf (err_string,
"unknown type for constant %c, Zs\n", ch, striDi;

if (put_error(err string) .. BREAK)(
return(BREAK);

288



if (nlinks)(
constraints -(struct constraint *

emalloc ((unsigned int)(sizeof (struct constraint) *(nlinks+

1));
for (i - 0; i < nlinks; i++)(

constraints[iJ.num - 0;
constraintsji].max - KAXONSTRAINTS;
constraints[i].cvec -((float **)

emalloc((unsigned int)(sizeof(float *
MAXONSTRAINTS));

constraints[i].ivec . ((float*)
einalloc((unsigned int)(sizeof(float *

MAXCONSTRAINTS));
for (j - 0; j < nunits; J++)(

constraints~iI.cvecljj - NULL;
constraints[iJ.ivec~jJ - NULL;

else(
constraints - NULL;

positive-constraints - ((float*)
enalloc ((unsigned int)(sizeof(float * *AXCONSTRAINTS)));

for (i = 0; i < MAXCONSTRAINTS; i++)
positive-constraintslil NULL;

negative constraints - ((float **)
einalloc((unsigned int) (sizeof (float *)*MAXCONSTRAINTS)));

for (i - 0; i < MAXONSTRAINTS; i++)
negative constraintsjij NULL;

return(CONTINUE);

change_lrate()
struct Variable *varp;

if ((varp - lookup var("llrate")) I. NULL)(
change-variable("Irate",(int *) varp);

else(
return(put-error("BIG PROBLEM: irate is not defined"));
I

if (epsilon I- NULL)
for (i -0; i < nunits; i++i)(

for (j - 0; j < num -weights_to~iJ; J++)(
if (epsilonliJ[jJ 1. 0.0)

289



epsilon[i][j] - Irate;
I

)
I
if (bepsilon I. NULL) [
for (i = 0; i < nunits; i++) (

if (bepsilon[i] 1= 0.0)
bepsilon(i] = Irate;

)
)

/* given a defined system, we will write the matrix and the biases
out to a file. The file format is one floating point number per

line,
with the weight matrix in row major format followed by the biases.

*/

write weights() (
int i,j,end;
char *str - NULL;
char fname[BUFSIZ];
char *star_ptr;
char tstr[40];
FILE * iop;

if (weight .. NULL) (
return(puterror("cannot save undefined network"));

)

nameagain:

str = get-command("weight file name: ");
if (str = NULL) return(CONTINUE);
strcpy(fname,str);
if ( (starptr - index(fname,'*')) I. NULL)
strcpy(tstr,star_ptr+l);
sprintf(starptr,"Zd",epochno);
strcat(fname,tstr);)
if ((iop = fopen(fname, "r")) I= NULL) (
fclose(iop);

get command("file exists -- clobber? ");
if (str .- NULL 11 str[O] I. 'y') (

goto nameagain;
I

if ((iop - fopen(fname, "w")) .. NULL) (
return(put_error("cannot open file for output"));

for (i - 0; 1 < nunits; i++) (

290



for (j - 0; j < num-weights to[iJ; J++)
fprintf(iop, "Xf\n", weight[iI[j]);

if (bias)(
for (i -0; i < nunits; i++)(
fprintf(iop, "Zf\n", bias[i]);

if (sigma)(
for (i - 0; i < nunits; i++)(
fprintf(iop, "Zf\n", sigma[i]);

(void) fclose(iop);
return(CONTINUE);

read weights()
int i,j,end;
register float *vt, *shwt, *vtend, *shend;
char *str - NULL;
FILE * iop;
if(!System Defined)

if(!define systemo)
return(BREAK);

if (weight .. NULL)
return(put-error("cannot restore undefined network"));

if((str - get command("File name for stored weights: ") mNULL)

return(CONTINUE);

if ((iop - fopen(str, "r")) .. NULL)f
sprintf(err_string,"Cannot open weight file Zs.",str);
return(put_error(err-string));

for (i - 0; 1 < nunits; i++)f
if(num -weights tolij .- 0) continue;
for (j - 0; j < num weights_tofu]; J++)(
if (fscanf(iop, "if", &Weight[i]J j) m0)(

fclose(iop);
return(put_error("weight file is not correct for this

network"));

291



)
}

end - nunits;

if (bias I= NULL) {
for (i - 0; i < end; i++) {
if (fscanf(iop, "f", &bias[i]) - 0) (

fclose(iop);
return(put_error("veight file is not correct for this

network"));
)
)

}

if (sigma I. NULL) {
for (i - 0; i < end; i++) (

if (fscanf(iop, "Zf", &sigma[i]) -. 0) (
fclose(iop);
return(put_error("veight file is not correct for this

network"));
}
}

)

(void) fclose(iop);
updatedisplayo;
return(CONTINUE);

/* realloc positive-constraints, negative-constraints, and link
constraints

this is called vhenever the allocated constraint lists run out of
space for additional constraints 14-May-87 MAF / 15-May-87 JLM */

enlarge_constraints(conindex) int con index; (
if (conindex - ENLARGE POS) {
maxpos +- 100;
positiveconstraints - ((float **) erealloc

((char *) positive constraints,
(unsigned int) ((maxpos - 100) * sizeof(float *)),
(unsigned int) (maxpos * sizeof(float *))));

}
else if (con index - ENLARGENEG) (
maxneg +. 100;
negativeconstraints - ((float **) erealloc

((char *) negative constraints,
(unsigned int) ((maxneg -100) * sizeof (float *)),
(unsigned int) (maxneg * sizeof(float *))));

}
else (
constraints[conindexj.max +- 100;

292



constraintslcon indexJ.cvec a((float **) erealloc
((char *)constraints Icon~index j.cvec,
(unsigned int)
((constraints[conindex].max - 100) * sizeof(float *)

(unsigned int)
(constraints[con_index)uiax * sizeof(float *))

constraints[con_index].ivec - ((float **) erealloc
((char *)constraints[con_index] .ivec,
(unsigned int)

((constraints[con_indexJ.max -100) * sizeof(float *)
(unsigned int)

(constraintsllcon_indexj.max *sizeof(float *))

293



Appendix 6

Modified SDMO Source Code for Hybrid Epoch-Pattern Method

MAINMOD. C
/*this file is part of "neuron" It contains several general routines
needed in the shared memory version of the simulator*/

#include <stdio.h>
#include "maindefmod.h"

extern double *lumped;
extern int lumpid;
extern int *misc;
extern int miscid;

calcpage(size)
int size;
I
int inc, pg, endof, xtra, nuend;
inc = 1;
pg = 4096;
endof . sbrk(0);
while (pg <= endof) (

pg = 4096 * inc;
++inc;

)
xtra - (pg - endof) + size;
nuend = sbrk(xtra);
return(pg);

) /* end of calc_page *I

quito
I
shmdt(lumped);
shmctl(lumpid, IPCRMID, 0);
shmdt(misc);
shmctl(miscid, IPC RMID, 0);
)/* end of quit *7

MAINDEFMOD.H
I*

The neuron will process
exp

/ w(x -x )
i i o

*/

294



tinclude <errno.h>
#include <fcntl.h>
# include <signal. h>
# include <sys/ types. h>

#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/seui.h>
#include <sys/mpadvise. h>
#define forkflag misc[O]
#define parentflag misc[1J
#define readforkflag inisc[21
#define procnetflag misc[3]
#define checkerrflag misc[4J
#define master misc[6J
#define slave misc[7J
#define calcdeldonef lag misc[8]
#define readnetflag misc[9J

#define patterr2 lumped[O]

#define toterr lumped[lJ

extern mnt errno;
extern char *sys_errlistfJ;
static mnt shmemtemp;
double pat terr;

typedef struct
neuron-type (
mnt no -of -inputs;

double *input_list; /* can be impreoved..for time being this
is included...*/

double *weight-list; /* the actual weights of neurons*/
double *delwgt;, /* delta weight changes of neurons b.b.*/
double *del; 1* comnmon to both processors *
double *dell; /* proc, 1 delta*/
double *del2; /* proc 2 delta in sh mem *
double x zero;
double exp;
double threshold;
double (* transfer -function)();
1* any function can be placed here..cool *
double output;
double error; /*added BEB*
double delta; /*added RB*/
double *bias; /*added BB*/
double delbias; /*added BB*/
double deltal; /*added BB*/
double *delta2; /*added BB*/
double bia; /*added BB*/

295



)NEURON;
typedef NEURON *NEURONPTR;

typedef struct
layer_type(
int noofneurons; /* on this the layer */

NEURONPTR *thisneuron; /*pointer to neuron pointers on layer
,/

LAYER;
typedef LAYER *LAYERPTR;

typedef struct
network type(
double *net_inputlist; /* to have structure clear */
double *netoutput_list;
int no_of layers; /* on this network */
LAYERPTR *this_layer; /* pointer to layer pointers

on network */
double *net_input_listi; /* to have structure clear */
double *net output_listi;

T NETWORK;
typedef NETWORK *NETWORKPTR;

NETWORK currentnetwork; /* global holding current network */

typedef struct
setup(

int noofinputs;
int nooflayers;
int *neuronsperlayer;
) SETUPTYPE;

SETUPTYPE netvorkset_up;

/* Now define the global variables, they are not pointers because */

/* when the program gets bigger compiler goes crazy and cannot store
*/

/* string..*/

char input file name[80], outputfile name[80],
network-file_name[801, this-buffer[80l;

int globalcursor_y, global_cursorx;

MAINMOD.C
* ------------------------------------------------------------- *

/* Module Name: Main.c MODIFIED FOR HYBRID mainmod.c */
/* wwmf f */

296



/* This is the main body of the program. *
1* Becker Co., Inc 1989 (C) *

/* -------------------------------------------------------------- *

#include <stdio.h>
#include "maindefmod.h"

main(argc, argv)
int argc;
char **argv;

/ * begin of MAIN *

run_plain(argc,argv);
exit(O);

) * end of MAIN *

BPTP.NMOD. C
/*---------------------------------------------------------------*
/* Module Name: bptrnmod.c MODIFIED FOR HYBRID APPROACH *
/* i m U *

Becker Co., Inc. 1989 (C) *
/* -------------------------------------------------------------- *

NOTE: The f ield output of a neuron cell will be used to store the
error

fedback..just temporarily for next interation..

#include <curses. h>
#Include "uaindefmod.h"

typedef struct func_pass(
double value;
double thr;
double (* this function)();
)FUNCARGTYPE;

FILE *fp, *fopeno;
extern mnt *misc;
extern double *lumped;
mnt function, pid;

adjust bp error(this network)
NETWORK *ithis network;

/* from the last layer will start backpropagating errors and adjusting

waits as it goes toward the first layer. Assumes that the error is

297



already backpropagated and stored on <.output> field of each neuron on

layer . . .

/ * begin of ADJUST_-BP_-ERROR *
int i, looper, neuron loop;

for ( i =this netvork->no of_layers - 1
i >. 0 --1...) /*don't adjust first layer on loop *

for ( neuron_loop - 0;
neuron_loop < this-network->this layer[ij->no-of-neurons;
++neuron-loop)

for (looper - 0;
looper < this -network->this-layerli]-

>this Tneuron[neuron_loopj->no-of-inputs; ++looper)

this -netvork->this-layer[iJ->this-neuron[neuron_loop]-
>delwgt~looperj a
(0.5 * this-netvork->this layer[iJ->this-neuron[neuron-loop]-

>del[looperJ) + (0.9 * this netvork->this layert ii-
>this-neuronf neuron-loopj->delgtllooperJ);

this netvork->this layer[i]->this neuron[neuron loop]-
>veight_listilooperl +-

this netvork->this_layer[i]->this-neuron[neuron-loop]-
>delwgt~looperJ;

this -netvork->this-layer[i J->this-neuron~neuron-loop->delllooperI
0.0;

) /* end of looper for *

this netvork->this layer[ i]->this-neuronineuron-loopj->delbias =
0.5 T this netvork->this_layer[i]->this-neuron[neuron-loop]->bia +

0 9 *

this netvork->this_layer[ijj->this-neuron[neuron_loop]->delbias;

this -netvork->this -layer[iJ->this -neuron[neuron loop]->bias[OJ +=
this -netvork->this-layer[iJ->this-neuron[neuronloopJ->delbias;
this-netvork->this-layer[i]->this-neuron[neuron_loop]->bia = 0.0;

I /* end of neuron loop for *
) * end of i layer for loop *
/ * end of ADJUSTEP ERROR LAYER *

298



mod(this netvork, this file)
NETWORK *this-netvork;-
FILE *this_file;

mnt i, neuron_loop, looper, dummy, no-of_patterns;
static mnt incr;

if( !readforkflag)[
readforkflag - 1;

errno -0;

pid -forko;
if(errno >0)
fprintf(stderr, "Trouble with fork, errno - XUd, which means Zs\n",

errno, sys -errlistlerrnoj);
errno - 0;

)/* end of not fork *

if(pid .. 0)
errno - 0;
function - mpadvise(MPACPUSET, 4);
if(errno >0)
fprintf(stderr, "Trouble with fork, errno %3d, which means Zs\n",
errno, sys errlist[errnoJ);
errno - 0;P
revind(this file);
fscanf(this_file, "Xd\n", &no -of_patterns);
fscanf(this_file, "Xdn", &dummy);
fscanf(this_file, "Xdn", &dummy);

modaga in:
if(incr .. no_of_patterns)(
rewind(this file);
fscanf(this -file, "Xd\n", &no-of-patterns);
fscanf(this-file, "%d\n", &dummy);
fscanf(this file, "Xd\n", &dummy);
incr - 0;
) /* end of if incr *
for(looper 0; looper <this-netvork->this layer[OJ->this-neuron[0]-
>no -of -inputs; ++looper)
I
fscanf(this-file, "Xlf\n", &this-network->net_input_list~looperl);

for(looper - 0; looper <this -network->this layerlthis network-
>no -of_layers -11 ->no of neurons; ++ looper)

fscanf(this-file, "Zlf\n", &this-netvork->net_output list[looper]);

readnetflag - 1;

299



incr +. 1;
for(looper - 0; looper <this-network->this_layer(0J->this-neuron[OJ-
>no_of_inputs; ++looper)
I
fscanf(this-file, "Xlf\n", &this-netvork->net_input_listlllooperj);

for(looper - 0; looper <this_netvork->this_layer[this network-
>no_of_layers -11 ->no-of-neurons; ++ looper)
I
fscanf(this-file, "%lf\n", &this-netvork->net_output_listiflooperj);

process_network b(this network);
vhile( !procnetflag);,
procnetflag - 0;

check-error_output(this-network);

for ( i-0; i <. this netvork->no_of_layers - 1 ; i++)(
for ( neuron_loop - 0;

neuron_loop < this-netvork->this_layerfiJ->no-of-neurons;
++neuron-loop)

for (looper - 0;
looper < this-netvork->this-layerli]-

>this-neuronineuron-loopJ->no_of_inputs;
++looper)

tisntok>hslyri>tinernnuolop>dl[opI

this -network->this-layerliJ->this-neuron[neuron-loopJ->del2[ooer

this netvork->this layeriJ->this neuron[neuron-loopj->et*

>input_listilooper];

this -netvork->this layerlij->this-neuronineuron-loop]->delta2IO]
this netvork->this-layerlil->this neuron[neuron-loopl->delta;

)/* end of i */
) * end of neurloop *
)/* end of looper *
incr +. 1;
calcdeldoneflag - 1;

vhile( Iparent flag);
parentflag - 0;
goto modagain;

)/*end of if *

300



if(pid !-0) return;
I /* end of MOD*/

calcdel(this network)
NETWORK *this network;
( /* begin calcdel*/
int i,neuron-loop,looper;

for ( i1.0; i <. this netvork->no of layers - 1 ; i++)(
for ( neuron_loop ; 0; neuron -loop < this-netvork->this-layerli]-

>no-of -neurons; ++neuron-loop)

for (looper - 0;
looper < this -network->this-layer[iI->this-neuron[neuron_loop]-

>no_of_inputs; ++looper)

(hsntok>hslyri-ti-ernnuo~op-dl~opr

this -netvork->this layer[iJ->this neuron[neuron_loopJ->delltooer

this-netork->this layer[iJ->this neuronneuron_loopj->et *

>inpiit_list Ilooper];

this -network->this layerliJ->this neuron~neuron_loopJ->deltal=
this network->this layer[iJ->this -neuron[neuron_loopj->delta;

) * end of cacdel *

calcbia(this network)
NETWORK *this network;
( /*BEGIN of calcbia */
int i, neuron_loop, looper

for ( i-0; i <. this netvork->no of layers - 1 ; i++)(
for ( neuron_loop - 0; neuron loop - this_network->

this-layertil->no-of-neurons;++neuron-loop)

for (looper - O;looper < this -network->
this_layerfiJ->this_neuron[neuron-loop]->no-of_inputs;
++looper)

thsntok>hs-lyri(ti ernnuo~op-dlloel

this-network->thls-layer[l->this neuronineuron_loopj->del[looper=

301



this-network->this-layer[iJ->this-neuron[neuron-loopJ->del2[looperJ;

this -netvork->this layer[i]->this-neuronineuron_loopJ->bia .
this -network->this-layer[iJ->this neuron[neuron_loopl->deltal +
this-network->this-layer[iJ->this-neuron[neuron_loopj->delta2[OJ;

31* end of calebia*/

check error output(this network)
NETWORK *this network;
/* Compare the output of net on training if it's on limit the stop

and also update the output field on last layer of network.
Returns 1 if output vector is on range to be considered close to

( * begin of CBECKERROROUTPUT *

mnt looper, neuron -loop;

double temp_err, temp, sigmoido, derivativeo;

mnt inner, outer;
mnt lay, i, J, inputs;

FUNCARGTYPE dummy;
for (outer ;; 0; outer < this -network-)no of layers; ++outer)

for( inner=O; inner< this-network->tiislayer[outerJ-
>no of neurons;++inner)

this-netvork->this-layer[outerj->this-neuron[innerl->error =0.0;

patterr - patterr2 - 0.0;

for(looper = 0;
looper < this -netvork->this layerithis-network->no_of_layers - 1]

->no-of-neurons; ++ looper)

if(pid I= O)[
temp err = this -netvork->this layer~this-network->no-of-layers - 11-
>this -neuronilooper]

->error . this -network->net-output_list~looperj -
this-network->this -layer[this_network->no-of_layers - 1]

->this-neuroni looper 1->output;
patterr +- temp-err * temp-err;

302



else(

temp err a this -network->this-layer[this-netvork->no-of_layers - 1J-
>this neuron[IooperJ

->error -this -netvork->net-output_listl[looperj -

this-netvork->this_layer[this netvork->no-of layers - 11
->this_neuron[looperJ->output;

patterr2 i-= temp err*temp-err;

for(lay .this-netvork->no-of-layers -1; lay >.0; lay )

for(i=0;i<this-network->this layerflay]->no-of-neurons; i++)

temp . this -network->this_layer[layJ->this neuron[i]->output;
this -network->this-layer[layJ->this-neuron[iJ->delta .
this-netvork-> this_layer[ layJI-> thisneuron [ iI->error * temp *(1.0

temp);

for(J=0;J<this -netvork->this layer[layj->this-neuron(ij-
>no of_inputs; J++)

if (lay -=0)
inputs . 1;

else
I
this -netvork->this_layerflay-1J->this -neuron[jJ->error +.
this -netvork->this_layer[layJ->this-neuron[iJ->delta *
this-netvork->this_layerilay]->this-neuron[iJ->veight_listiji;

) * end else */
) /* end j for loop *

) * end i for loop */
/ * end lay for loop *

) * end of CHECKERROROUTPUT *

back prop_train(this network, this-alpha)
NETWO0RK *this network;
double this_alpha;
1* Assumes that data is already placed on the net -output/input list

vector on network... This function is for a plain terminal*/
( * begin of BACKPROPTRAIN *

extern char *read -stringo, *check-fileo;
FILE *temp, *fopeno;
mnt loo, cursor_y, cursor-x, looper, dummy, no-of patterns,

303



no ofpasses-O;
Int fine, notrials, t, done, i, step - 0, trials - 0;
register double temp_err;

int noofprocess - 2, no_of_pats;

char *fname, buff[80], this choice;
WINDOW *back-screen, *error screen , *create vindov();

parentflag - 0;
forkflag - 0;

initscro;
backscreen = create vindov(20,70, 4,4);

errorscreen = create_window(2,70, 22,4);

insert string( back screen,
"Will the patterns be entered from keyboard/file (k/f)?",1,2,O);

vrefresh(backscreen);
getyx( backscreen, cursor y, cursor x);

thischoice = readkey_stroke(back_screen);

if( this choice I= 'f' && this choice I= 'k')

error message(backscreen, error-screen ,"Wrong input..",
cursor y, cursor x);

this choice = read_key_stroke(back-screen);
werase(errorscreen);}

wrefresh(errorscreen);
insertstring(backscreen,"What is the pattern file name?",4,2,O);
wrefresh(backscreen);
getyx(backscreen,cursor_y, cursorx);
fname - read string(backscreen);
fname -checkfile(fname, "r", back screen, error-screen,

cursor_y, cursorx);

strcpy(buff ,fname);

checkpattern_file( buff, thisnetwork);

temp - fopen(buff, "r");

insert string(backscreen, "For how many trials do you want to

train?",
6,2,0);
wrefresh(backscreen);
getyx(back screen, cursor_y, cursorx);

notrials - get_integer(backscreen, error-screen, cursory,

cursor x);
wrefresh(backscreen);

304



getyx(back screen, cursor_y, cursorx);
step - answer_yesno(backscreen, error screen,
"Do you want to see all the steps (y/n)?", cursor_y+1, 1);

wrefresh(back screen);
trials - answer_yesno(backscreen, error-screen,

"Do you want to see all the trials (y/n)?",
cursor_y+2, 1);
verase(back screen);
rewind(temp);
fscanf(temp, "Zd\n", &no_of_patterns);
fscanf(temp, "Zdkn", &dummy);
fscanf(temp, "Xdkn", &dummy);

printnetwork.stat(thisnetwork, back-screen);

noof_pats - noof_patterns;
if(no_of_patterns Z no ofprocess -- 0)
noofpatterns - no ofpatterns/no of_process;
else
noofpatterns - noof_patterns/no_of_process +1;

do-it again:

for(t - 0; t < notrials; ++t)(
noofpasses +- 1; /* incrememt the counter of the trainings *1

if (trials)(
wrefresh(backscreen);

wmove(backscreen, 5,4);

wprintw(back__screen,
"Network has gone through %d trials \n", no of_passes);

toterr = 0.0;
for( looper -0;

looper < noof_patterns;
++looper)

(
if (trials){

wmove(back screen, 6,4);
wprintw(back screen,

"Training file has %d patterns, current pattern is Zd\n",
noof_pats , looper + 1);

if (Ireadforkflag)
mod(this network, temp);
vhile(Ireadnetflag);
readnetflag - 0;

305



process network b(this-network);
procnetflag . 1;

check error output(this-network);
if(trials) (

for(loo . 0;
loo <this-network->this-layerjthis-netvork->no of_layers

->no-of-neurons;
++loo)

wmove( back screen, 9 + loo , 2);
vprintw(back screen, " Item[ Xd I - f",
loo, this-network->this_layer[this-network->no-of_layers

->this -neuron[looJ->output);
wmove( back screen, 9 + loo , 25);

wprintw(back -screen, "Desired Item[ %d J %f\n",
loo, this-network->net-output_list[looJ);

)*end of if trials*/
calcdel(this network);
while( Icalcdeldonef lag);
calcdeldoneflag . 0;
toterr += patterr2 + patterr;
calcbia(this network);
adjust_bp-error(this-network);
parentflag . 1;
if(trials)

wmove(back screen, 7,4);
wprintw(bacjk -screen, "patterr -Xf", patterr);
wmove(back screen, 7,24);
wprintv(back screen, "Toterr -Zf\n", toterr);

/*end of trial if*/

if(step) (
wmove(back -screen, 16,5);
wprintw(back screen, % d BP iterations \n", no of_passes);
wprintw(backscreen, "Press Any key to- continue",

no_of_passes);
wrefresh(back-screen);
get ch 0;

)/* end of no of patterns FOR *

if (toterr < 0.04)[
fine . 1;

break;

306



) * end of no trials FOR *
kill(pid, SIGKILL);
readforkflag . 0;
if( Itrials) (
vrefresh(back-screen);

wmove(back-screen, 5,4);

vprintv( back -screen,
"Network has gone through Zd trials \n", no of passes);

vmove(back -screen, 6,4);
vprintw(back screen,
"Training file has %d patterns, current pattern is Mdn",

no -of_pats , looper);
for(loo - 0;

loo <this netvork->this_layer[this-netvork->no-of_layers

->no-of-neurons;
++loo)

vmove( back screen, 9 +. loo , 2);
vprintv(back -screen, " Item[i %d I - %f",
loo, this-netvork->this layer[this-netvork->no-of_layers

->this neuron[looJ->output);
vinove( back screen, 9 + loo , 25);

vprintv(back -screen, "Desired Item[ Xd % f\n",
loo, this-netvork->net output list[loo]);

vmove(back screen, 7,4);
vprintv(back screen, "patterr - f", patterr);
vinove(back -screen, 7,24);
vprintv(back screen, "Toterr % f\n", toterr);

)/* end of not trials IF *

if(fine .. 1)
wmove(back-screen, 16,0);
vprintv(back -screen, "FINISHED, solution found after %d training
sequences\n", no-of_passes);
vrefresh(back-screen);

vmove(back screen, 18,5);
getyx(back~screen,cursory, cursor-x);

if(answer yes-no(back-screen, error-screen,
"Do you want stats (yin)?", cursor_y, cursor-x) -

307



1)M

system ("clear");
rstats(stdout);
vmove(back screen, 17,0);
getyx(back~screen, cursor-y, cursor-x);

if( answer_yes Tno(back-screen, error-screen,
"Would you like to train again (yin)?", cursor_y, cursor-x) =

system("clear"');
initscro;

if (done==1)
no_of_passes -0;

forkflag =0;

goto do_it_again;

endvino;

I /* end of BACKPROPTRAIN *

NEURTMOD.C
/*---------------------------------------------------------------*
/*Module Name: neurtulmod.c MODIFIES FOR HYBRID APPROACH *

1* Becker Co., Inc. 1989 (C)
/*---------------------------------------------------------------*

#include <stdio.h>
tinclude <malloc.h>
tinclude "maindefmod.h"

#define TF VALUE L 0.0
#define TFVALUEH 1.0

extern mnt pid;

mnt luinpid, lumppage;
unsigned lumps ize;
double *lumped - NULL;

mnt iniscid, miscpage;
unsigned miscsize;
mnt *misc - NULL;
mnt ioid;

typedef struct func_pass
double value;
double thr;

308



double (* this function)();
FUNC ARGTYPE;

FILE *fopen(, *fp;

/*

This set of routines create (dynamically) a neural
network of any size the only limitation is the machine
that is running it.

It will be developed as device independent as possible so that
to make it run on any machine all it would be needed will be
the drivers for that particular machine (for the graphics ouput)

by Becker Co, Inc (1989) (C)
*/

*-----------------------------------F .1

NEURON create-neuron( no of input)
int no of input;
(

NEURON tempneuron;
int looper;
double sharpo, sigmoido;
temp_neuron.input-list - (double *)calloc(no of input,

sizeof(double));
/* tempneuron.weight_list - (double *)calloc(noofinput,

sizeof(double));
*/

tempneuron.delwgt = (double *)calloc(no of input,
sizeof(double));

tempneuron.del - (double *)calloc(noof_input,
sizeof(double));

temp_neuron.dell = (double *)calloc(noof_input,
sizeof(double));

temp_neuron.weightlist - &lumped[shmemtemp];
shmemtemp += no of input +2;
temp_neuron.del2 =i&lumped[shmemtemp];
shmemtemp +- no of input +2;
tempneuron.bias - &lumped[shmemtemp];
shmemtemp +- 2;
temp neuron.delta2 - &lumped[shmemtemp];
shmemtemp += 2;

/* Nov that we allocate space for the weights.. initialize randomly
*/

for ( looper -0 ; looper < no ofinput ; ++looper)
( tempneuron.weight_list[looperJ -( rando* 6.1035E-5) - 1.0;

309



tempneuron.delvgt[looper] - 0.0;
tempneuron.del[looper = 0.0;

temp_neuron.dell[looper] - 0.0;
temp_neuron.del2[looper] 0.0;

/* compiler doen't like undefined values..so intialize everything
*/

temp_neuron.no of inputs = no ofinput;

tempneuron.xzero a 0.0;
temp_neuron.exp - 1.0;
temp_neuron.threshold - 0.0;
temp_neuron.transfer_function - sigmoid ; /* default sharp TF */

temp_neuron.output = 0.0;
temp-neuron.error - 0.0;
temp_neuron.delta - 0.0;
temp_neuron.bias[0J - ( rando*6.1035E-5) - 1.0;
temp_neuron.delbias - 0.0;
temp_neuron.deltal - 0.0;
temp_neuron.delta2[0] - 0.0;
temp_neuron.bia - 0.0;

return(temp_neuron);
)
*-----------------------------------F .2

LAYER create_layer( layerno, noofneurons, prey_layer no of neurons)
nt layerno;
int no of neurons;
int preylayer no of neurons;

[ /* begin of CREATE LAYER */
NEURON create-neurono;

LAYER templayer;
int i;
NEURON *dummyneuron; /* memory space MUST be allocated to

hold
the actual neuron space */

/* Create dynamically the pointers to neurons*/

temp_layer.this_neuron - (NEURONPTR *)calloc(no of neurons,

sizeof(NEURONPTR));

dummyneuron - (NEURON *)calloc(noofneurons, sizeof(NEURON) );

310



temp_layer.noof neurons a no of neurons;

/* Nov create the actual neurons */
for (i.O; i < no-of neurons ; +i)
{

dummy_neuron[i] - create neuron(prevlayerno of neurons);
temp_layer.this_neuron[iJ - &dummy_neuron[il;)

) /* end of CREATELAYER*/

*-----------------------------------F .3

NETWORK createnetvork(netset-up)
SETUPTYPE net_setup;

( /* begin of CREATE NETWORK */

NETWORK netvorktemp;
int counter;

LAYER *dummylayer;

int i, totneuron, connects;
totneuron - 0;
connects = 0;

/*the folloving calcs the size of the netvork then creates enough
shared memory space to handle the parallel procesing */

for(i - 0; i < net setup.nooflayers; i++)
(

totneuron += netsetup.neurons_perlayer[i];
if (i .. 0)

connects - netsetup.no ofinputs *
netsetup.neurons_perlayer[i;

else
connects +- net_setup.neurons_per_layer[i-1J

netsetup.neurons_per_layer[i];
) /* end of for */

connects. (net set up.neurons_per_layer[O] *3 ) +
(net_setup.neurons_per_layer[(netset_up.no of layers - 1)1*3) +
(connects * 4) + (totneuron * 5) + 4;

errno - 0;

lumpsize - (unsigned)(sizeof(double) * connects );
fprintf(stderr, "connects - Zd, lumpsize - Zd\n", connects, lumpsize);
lumpid - shmget(O, lumpsize, 06661IPCCREAT);
if (errno >0)
fprintf(stderr, "lumped errno is X3d, vhich means Zs\n", errno,

311



sys errlist ierrnoJ);
errno - 0;
lumppage - caic_page(lumpsize);
lumped - (double *) shmat(lumpid, lumppage, 0);
if (errno > 0)
fprintf(stderr, "In lumped Xs\n", sys-errlist[errnoJ);
for( i = 0; i< connects ; i++)

lumpedli] - 0.0;

/*create enough space for ten flags to be used in bp_train-c-- see
define section */
miscsize - (unsigned)(sizeof(int) * 10 )
miscid . shmget(0, miscsize, 06661IPC-CREAT);
if (errno >0)
fprintf(stderr, "misc errno is %3d, which means Xs\n", errno,
syserrlist [errnoJ);
errno - 0;
miscpage - caic_page(miscsize);
misc -(mnt *) shmat(miscid, miscpage, 0);

if (errno > 0)
fprintf(stderr, "In misc Zs\n", sys_errlist[errnoj);
for( i - 0; i< 10 ; i++)

misci - 0;
shmemtemp - 2;

/* Create fist the pointers to the layers of the network *
network temp.this_layer - (LAYERPTh *)
calloc~net set up.no of_layers, sizeof(LAYERPTR));

dummy layer ;; (LAYER *)calloc(net_set-up.no-of-layers,
sizeof(LAYER) );

network temp.no-of_layers - net set up.no of layers;

for (counter-O; counter < net_set-up.no-of_layers ; ++counter)

if ( counter .. 0) /* first layer *

dummy_layericounter] - create_layer(counter,
net -set -ip.neurons per_layer[counterJ,
net-set up.no-of-inputs);

network _temp.this _layer~counterj

&dummy_layer [counter];

else[
dummy_layer[counterJ - create_layer( counter,

net -set_up.neurons_per_layer~counterJ,
net set_up.neurons_per_layericounter-1J);

network temp.this layer[counter]
&dummy~layerfcounterJ;

312



/* Nov create the input and output array (dynamically) as
requested by user...to be used to train or output nicely*/

networktemp.net_input_list - &lumped[shmemtemp];
shmemtemp+= netsetup.neurons perlayer[O] + 10;

network temp.netoutput_list - &lumped[shmemtemp];
shmemtemp+-net_setup.neurons_per_layer[(net_setup.no_of_layers-1)]

+ 10;

network temp.netinput_listl - &lumped[shmemtempj;
shmemtemp+w net_set_up.neurons_perlayer[O] + 10;

network, temp.net_output_listl - &lumped[shmemtemp];
shmemtemp+= netset_up.neurons_per_layer[(net_set_up.noof layers
-1)]

+ 10;
return ( network.temp);

} I* begin of CREATENETWORK *I

*-----------------------------------F .4

Now a set of routines to read and write the current
*/

1* network ..so work is not lost

-*//*-----------------------------------------------------------------

save neuron(this neuron, this_file)
NEURON *thisneuron;
FILE *thisfile;

/* assumes that file was already open in calling function..just saves
the neuron in order..i.e all fileds */

( 1* begin of SAVE NEURON */
int temp_index;

fprintf(thisfile,"Zd\n", this neuron->no ofinputs);

fprintf(this-file,"Xf\n", this-neuron->bias[O]);

/* finally save the weights */

for ( temp_index -0; temp_index < this_neuron->noofinputs;
++tempindex)

{
fprint f(this _ file,"Xf\n"

this neuron->weight_list[tempindex]);

313



) /* end of SAVE NEURON *//*-F .5
-------- -------- ------- - ------- * /

save network(this network, file-name)
NETWORK *this_network;
char *filename;

/* begin of SAVE NETWORK */
int layer_index, neuronindex;
FILE *thisfile;

if ( (thisfile - fopen(file name , "v") NULL)(
printf("Sorry cannot write on this file...\n");
exit(l);}

/* start by saving the network set up..*/
fprintf(thisfile, "Zd\n" , thisnetwork->this_layer[O]-

>this neuron[O]->no of inputs);
fprintf(this_file, "Xd\n" , thisnetwork->no of layers);

for ( layerindex -0;
layerindex < thisnetwork->no oflayers;
++layer index)

{
fprintf( this_file, "Zd\n"/* - neurons on layer -------- [ Xd ] \n"*/,

thisnetvork->thislayer[layer_index]->no of neurons/*,
layer_index*/);}

/* Now save the network ..every neuron from 0 -> no */
for ( layerindex -0;

layerindex < thisnetwork->no oflayers;
++layer-index)

(
for ( neuron index -0;

neuron-index < thisnetwork->this_layer[layer_index]-
>no of neurons;

++neuron-index)
(

saveneuron(this network->thislayer[layerindex]->
thisneuron[neuronindex],thisfile );

)

} /* end of SAVE NETWORK */

314



/* - .6
....- */

read neuron(this_neuron, this_file)
NEURON *this neuron;
FILE *this-file;

/* assumes that file was already open in calling function..just saves
the neuron in order..i.e all fields */

( /* begin of READ NEURON */
int temp_index;

fscanf(thisfile,"Zd\n", &this neuron->no of inputs);
fscanf(this file,"Xlf\n", &thisneuron->bias[0]);
/* finally read the weights */

for ( tempindex -0; temp_index < thisneuron->noofinputs;
++tempindex)(

fscanf(this file,"Zlf\n", &this neuron-
>weight_list[temp_Index]);

)

) /* end of READNEURON */

----------------------------------- F .7

read network(this_network, file_name)
NETWORK *this network;
char *file name;

/* Note that to be on the safe side when calling this function it's
better... BELIEVE ME..to send in a buffer[801 instead of just the
pointer for 'file-name' otherwise it's not reliable */

/* begin of READ NETWORK */
int layerindex, neuron index;
FILE *fopen(), *thisfile;
SET UP TYPE tempsetup;
NETWORK create networko;

if ( (this-file - fopen(filename , r") -= NULL)
(

printf("Sorry cannot read on this file...\n");
exit(l);

I

revind(this_file);

315



/* start by reading the network set up..*/
fscanf(this file, "Zd\n", &tempsetup.noof_inputs);
fscanf(thisfile, "Xd\n", &temp_setup.no-of_layers);

tempsetup.n"rons_per_layer - (int *)calloc(
temp_set_up.no of layers, sizeof(int) );

for ( layer index -0;
layer index < temp set up.nooflayers;
++layer_index)

{
fscanf( this file, "Xd\n ",

&temp-set_up.neurons_per_layer[layer_index]);
/*fprintf(stderr, "neurons Zd\n",
temp_setup.neurons per_layer[layer_index]);
*/
}

/* Once the set up is there..create the memory space to hold the
network to be read...*/
*thisnetwork = create netvork(temp_setup);

1* Now read the network ..every neuron from 0 -> no */

for ( layer_index =0;
layerindex < this network->no oflayers;
++layer_index)

{
for ( neuron index =0;

neuron-index < this netvork->this_layer[layer_index]-
>no of neurons;

++neuronindex)
(

readneuron(thisnetwork->this-layer[layer index]->
thisneuron[neuronindex],

this-file );

) /* end of READ NETWORK */

check-patternfile(filename, forthisnetwork)
char *file name;
NETWORK *for this network;
/*

Will scan the file with the pattern(s) and check that all oata is
consistent..so when training starts it won't hang ...Assumes that

the file exits when called.. Outputs 0 on success, I on failure..
,/

{ /* begin of CHECKPATTERNFILE */

316



FILE *thisfile, *fopeno;
int noof_patterns, noof_inputs, noofoutputs,

looper, counter
double temp_value;

/* Check first if the file exists */
if ( (this-file - fopen(file name , "r")) MM NULL)
{
printf("Sorry cannot read this file...\n");
exit(1);

]

revind(thisfile);

/* Nov that the file is there check if patterns are correct,
i.e. dimesions and format */

fscanf(thisfile, "Xd\n", &no of patterns);
fscanf(this file, "Xd\n", &no ofinputs);
fscanf(this file, "Zd\n", &noof outputs);
if ( (no_ofinputs I. for thisnetvork->this_layer[O]-

>this neuron[O] ->no ofinputs ) 11
(no_of_outputs I= for this network->thislayer[for_this network
->no of layers -1]->noofneurons) )(

printf("Sorry patterns dimensions do not match netvork's...\n");
exit(l);I

/* Finally check that file contains patterns correctly
doesn't check when incomplete data... */

for (looper -0; looper < noof_patterns; ++looper)(
for ( counter -0;

counter < no of inputs;
++ counter)

if ( fscanf(this_file,"Zlf\n", &temp_value) .. EOF){
printf( " Sorry..incomplete data on file...\n");
exit(l);}

for (counter=O; counter < noofoutputs ; ++counter)

if ( fscanf(thisfile,"Zlf\n", &temp_value) .- EOF)
(

printf( " Sorry..incomplete data on file...\n");
exit(l);

317



/* If everything vent correct then the file has right Information
return succesful code..*/

return(O);

/ * end of CHECKPATTERNFILE *

read network io(this network, this-file)
NETWO-RK *tils network;
FILE *this file;
/* Assumes that file already exists and that it's already open so

it's just ready to read the input and ouput from current position
on file...

f * begin of READNETWORK_10 *
mnt looper;

int dummy, no_of_patterns;
static int incr;
if( Ireadforkf lag) (
readforkf lag - 1;

errno =0;

ioid =fork();

if(errno>O)
fprintf(stderr, "trouble with fork, errno % 3d, which means Zs\n",
errno, sys -errlist[errnol);
errno - 0;1

if(ioid .. 0)
fprintf(stderr, "ioid is Mdn", ioid);

rewind (this file);
fscanf(this -file, "Xd\n", &no-of_patterns);
fscanf( this file, "Xdn"l, &dummy);
fscanf(this -file, "Zd\n", &dummy);
readanother:
while (Imaster && Islave);
if (incr .. no of patterns)(
rewind (this file);
fscanf(this -ile, "Zd\n", &no -of_patterns);
fscanf(this file, "Zd\n", &dummy);
fscanf(this -file, "%d\n", &dumzuy);
incr - 0;
) * end of if *

/* read the input vector and place it on network *
for (looper-O;

looper < this-network->this_layer[0]->this neuron[0J
->no of inputs;

++looper)

if(!master)(

318



fscanf(this file, "Zlf\n", &this netvork-
>netinputlistl[looper]);
)
else

fscanf(this file, "Zlf\n", &this netvork-
>net_input_list[looper]);
)

/* read the output vector and place it on network */
for (looper-O;

looper < thisnetvork->this_layer[this netvork->no oflayers -1]
->no of neurons ; ++looper)(

if(!master) (
fscanf(this file, "Zlf\n", &this netvork-

>net_outputlistl[looper]);

)
else
fscanf(thisfile, "Zlf\n", &thisnetvork->net-output_list[looper]);

I
master = slave = 0;
incr +- 1;
readnetflag - 1;
goto readanother;
) /* end of fork loop */
if(ioid 1= 0) return;

) /* end of READ NETWORKIO */

/* Nov a set of transfer functions that can be used as transfer
function*/

double sharp(thisx, thisthreshold)
double this x;
double thisthreshold;

( /* begin of SHARP */
if ( this x >- this_threshold)
return(TF.VALUEH);

else
return(TF VALUE L);

) /* end of SHARP */

double sigmoid( thisx, thisthreshold)
double this x;
double this threshold;
( /* begin of SIGMOID */

double expo;

double limit . 12.0;

319



/* just in case convert to double everything..*/
if ( this x - this threshold > limit)

return( 0.99999§8);
else

if ( this x - this threshold < -limit)
return( 0.0000012);

else
return( ( 1.0/(1.0 + exp((-1.0)* (thisx - this-threshold)))

) )
) /* end of SIGMOID */

double derivative(this func)
FUNC ARG TYPE this func;

I * begin of DERIVATIVE */
double temp, ddelta - 1.OE-10;

temp - ( thisfunc.this function(this func.value + ddelta,
this func.thr) -

this func.thisfunction(this func.value, this func.thr)
) / ddelta;

return(temp);

) /* end of DERIVATIVE */

*-----------------------------------F .7

/* Now a set of routine to process the network */

sendneuronoutput(thisvalue, onthisnetwork, fromlayer_index,
fromneuron index, toneuron index)

double this value;
NETWORK *on This network;
int fromlayerindex;
tnt from neuron index;
int toneuronindex;

/* Calling routine should check that the last layer doesn't send
output

or this routine will do nothing...

( /* begin of SENDNEURONOUTPUT */

if ( (fromlayer_index +1) >= onthisnetwork->no oflayers)

printf(" Sorry no next layer to send values to..");
exit(l);

320



on this netvork->this_layer[fromlayer index + 1]

->this_neuron[toneuron index]-
>input_list[fromneuronindex]. this value;
) /* end of SENDNEURONOUTPUT */

-/ * - - - - - - - - - F . 8
------------------------------------------------- .8

send_layer(on_thisnetvork, this_layer_index)
NETWORK *on this network;
int this._layer_index;

/* This function will send values from layer to next ..in (hidden)
layers,

for last layer use other routine */

/* begin of SEND LAYER */
int from_ctr, to_ctr, from tmp, totmp;

/* if ( (this_layer index -=) */
if (this_layerindex > (on_thisnetvork->nooflayers -1) )

(
printf(" Sorry cannot process this layer...");
exit(l);)

/* We waste a little memory (~4bytes) but speed is gained ...*/
from_tmp - onthis netvork->this_layer[this_layer_index]-

>no of neurons
to_tmp - onthis netvork->this layer[this_layer_index +1]-

>no of neurons

for ( from_ctr -0; from ctr < from_tmp; ++from_ctr)
for ( to_ctr - 0; toctr < to_tmp; ++toctr)

(
sendneuron_output(

on this netvork->this layer[this_layerindex]-
>this_neuroni[from._ctr]-> output, on_this_netvork, this_layer_index,

from_ctr, to_ctr);

) /* end of SEND LAYER */

*-----------------------------------F .9

send outer_layer(on this network, first_or_last)
NETWORK *onthisnetvork;
int first-or last;

/* begin of SENDOUTERLAYER */

321



mnt counter, counteri, temp;

svitch( first-or-last)

case 0: temp - 0;
for ( countar-O;
counter < on-this-netvork->this-layer[0J->no-of-neurons

++counter)

for ( counteriwO;
counteri < on this netvork->this_layer[0I->
this -neuron[0]->no-of_inputs ; ++counterl)(

if(pid 1-0)
on-this network->this layer[OI->this-neuron[counterI

->input list[counterlJ=
on-this-network->net_input_list[counterl];

else
on-this-netvork->this_layer[0J->this neuron[counter]

->input-listicounterl]-
on-this-netvork->net_input_listl[counterlj;

break;

default: /* actually the last layer *
temp =on -this-netvork->no-of layers - 1;
for (counter -0;
counter < on-this-netvork->this layer[tempj->no-of-neurons

++counter)

on-this netvork->net output list[counterl
on t his -netvork-5this-layer[tempj-

>this neuron~counterJ ->output;

break;

) * end of SENDOUTERLAYER *

.10---------------------------------*

process-neuron(this-neuron)
NEURON *this-neuron;

/* Will just process the inputs add them according to law and
store the output so the layer is an independent block *

( * begin of PROCESSNEURON *
mnt counter;
double povo, hold-value;

322



hold value = this neuron->bias[O];
for ( counter .0;-counter < thisneuron->noof_inputs ; ++counter)

(
holdvalue += (thisneuron->weightlist[counter]) *

(thisneuron->input list[counter]);
)

/* Here the actual function will be include as a pointer to have any
transfer function available instead of the sharp threshold */

thisneuron->output = sigmoid(holdvalue, this neuron->threshold

/ /* end of PROCESSNEURON */

*----------------------------------F .11
-----------*/

processlayer(this_layer)
LAYER *thislayer;

/* begin of PROCESS LAYER */
int counter;
for( counter =0; counter < this layer->no of neurons ; ++counter)

process neuron(this_layer->thisneuron[counter]);

/ /* end of PROCESS LAYER */

*----------------------------------.12

process network(this network)
NETWORK *thisnetwork;

{ /* begin of PROCESSNETWORK */
int counter;

/* start with first layer...*/
sendouter_layer(thisnetwork, 0);
process layer(this network->this_layer[0]);
print layer(this network, 0);
if ( This network->no of layers > 1)
sendlayer(thisnetwork, 0);

/* Now go the inner(hidden layers...if any */
if ( this netvork->no of layers > 1)

for (counter=l; counter< (thisnetwork->no-oflayers-i);
++counter)

(
process layer(this network->thislayer[counter]);
print_layer(this network, counter);
send_layer(thisnetwork, counter);

)

323



/* Finally the last layer and done ... and handle for one layer only.

if ( this -network->no -of_layers > 1)
process_layer(this-network->this_layer[this-network->no of layers-

send -outer -layer(this -network, 1 ); /* send outer anyway *
if ( this -network->no-of_layers > 1)
print_layer(this-network, this-netvork->no-of-layers -1);

I/* end of PROCESSNETWORK */

process network b(this network)
NETWORK7 *this-network;

/* Same as previous routine. but it'll do it silently and will not
change the net output/input_list vector on network ..used by
backpropagation train. .*/

(/* begin of PROCESSNETWORKB *
mnt counter;

/* start with first layer.../
send -outer_layer(this-network, 0);
process-layer(this network->this layer[l);
1* Now go the Inner(hidden layers... if any *
if ( this -network->no_of_layers > 1)

send-layer(this-network, 0);

if ( this -network->no of layers > 1)
for (counter-l; counter< (this-network->no-of-layers-i);

++counter)

process -layer( this network->this-layer[counter 1);
send-layer(this-network, counter);

/* Finally the last layer and done ... and handle for one layer only.

if ( this -network->no_of_layers > 1)
process_layer(this-network->this_layer~this-network->no of layers -

11);

I/* end of PROCESS NETWORKB *

324



References

Anderson C, Learning and Problem Solving with Multilayer
Connectionist Systems, Ph.D. Dissertation, University of
Massachusetts, Sept 1986

Anderson J, Cognitive and psychological computation with
neural models, IEEE Trans. on Sys, Man, Cybernet., SMC-13,
NO.5, 1983, 799-815

Anderson J, Retrieval of information from long-term
memory, Science, 220, Apr 1983, 25-30

Aseo, Neural Networks-out of the Lab and into the real
world,Electronic System Design, September 1987, 17

Ballard D., Modular learning in neural networks,
Proceedings AAAI-87, 1987 279-284

Bertsekas D, Tsitsiklis J, Parallel and Distributed
Computation, Prentice Hall, New Jersey 1989

Blelloch G, CIS: a massively concurrent rule-based system,
Proc. 5th Nat. Conf. on Al, Phil. Pa, Aug 1986 735-741

Blelloch G, Rosenberg C, Network learning on the
connection machine, Proc. 10th IJCAI, 1987, 323-326

Bower J, Biological Based Neural Networks, Unpublished
Manuscript, 1988

Burkowski F, et. al., A Message-Based Architecture for
High
Concurrency, in Hypercube Multiprocessors 1986, M. Heath
(ed), SIAM, Philadelphia, 1986, 27-37

Burr D, A Neural Network Digit Recognizer, Proceedings of
the IEEE International Conference on Systems, Man and
Cybernetics, Oct 1986

Brown J, Parallel architectures for computer system,
Physics Today, May 1984, 28-35

Bruce A, et al., Learning and memory properties in fully
connected networks, Neural Networks for Computing, J.
Denker (ed), American Instit. Physics, 1986, 65-70

325



Carpenter G, et al. Computing with neural networks,
technical comments, Science, 235, 1987 1226-1229

Carpenter G, Grossberg S, Absolutely stable learning of
recognition cc2es by a self-organizing neural network,
Neural Networks for Computing, J. Denker (ed), American
Instit.Physics, 1986, 77-85

Carpenter G, Grossberg S, A massively parallel
architecture for a self-organizing neural pattern
recognition machine, Computer Vision, Graphics, and Image
Processing, 37, 1987, 54-115

Carpenter G, Grossberg S, Neural dynamics of category
learning and recognition: Attention, memory consolidation,
and amnesia, in Advances in Psychology, Vol 42, The
Adaptive Brain I, North-Holland 1987, 239-286

Carriero N, Gelernter D, Linda on Hypercube
Multicomputers, in Hypercube Multiprocessors 1986, M.
Heath (ed), SIAM, Philadelphia, 1986, 45-56

Caudill M, Neural Networks Primer, Part I, Al Expert, Vol
2 No 12, 1987, 46-52

Caudill M, Neural Networks Primer, Part II, Al Expert, Vol
3 No 2,1988, 55-61

Caudill M, Neural Networks Primer, Part III, Al Expert,
Vol 3 No 6, 1988, 53-59

Caudill M, Neural Networks Primer, Part IV, Al Expert,
Vol3, No 8, 1988, 61-67

Caudill M, Neural Networks Primer, Part V, Al Expert, Vol
3 No 10, 1988, 57-65

Caudill M, Neural Networks Primer, Part VI, Al Expert,
Vol4, No 2, 1989, 61-67

Caudill M, Neural Networks Primer, Part VII, Al Expert,
Vol 4 No 5, 1989, 51-58

Chen H, et. al., High order correlation model for
associative memory, Neural Networks for Computing, J.
Denker (ed), AIP, 1986,

Chun H, et al, Network regions: alternative to the
winner-take-all structure, Proc. 10th IJCAI, 1987, 380-387

326



Cohen M., Grossberg S., Absolute stability of global
pattern formation and parallel memory storage by
competitive neural networks, in Advances in Psychology,
Vol 42, The Adaptive Brain I, North-Holland 1987, 288-308

Cottrell G., A model of lexical access of ambiguous words,
Proc. Nat. Conf. AI, Austin Tx, Aug 1984, 61-67

D'Autrechy C, Reggia J, The MIRRORS/II simulator, Proc.
20th Annual Simulation Symp. March 1987, 121-132

Dell G, Positive feedback in hierarchical connectionist
models: applications to language production, Cognitive
Science, Vol 9, 1985, 3-23

Dimopolous N, Organization and stability of a Neural
Network class and the structure of a multiprocessor
system, Ph.D. Dissertation, University of Maryland, 1980

Dimopolous N, On the structure of the homogeneous
multiprocessor, IEEE Trans. on Computers, C-34, No.2 1985,
141-150

Eccles J, The modular operation of the cerebral neocortex
considered as the material basis of mental events,
Neuroscience, Vol 6 No. 10, 1981, 1839-1856

Eich J, Levels of processing, encoding specificity,
elaboration, and CHARM, Psycological Review, 92, No.1,
1985, 1-38

El-Leithy N, A semistate model for neural-type junction
circuits, unpublished Univ. Maryland

Fahlman S, Hinton G, Connectionist architectures for
artifical intelligence, IEEE Computer, Jan 1987, 100-109

Fahlman S, Touretzky D, van Roggan W, Cancellation in a
parallel semantic network, Proc. 7th IJCAI, Vancouver BC,
1981 257-263

Feldman J, Ballard D, Connectionist models and their
properties, Cognitive Science, Vol 6, 1982, 205-254

Ferry G, Networks on the brain, New Scientist, 16 July
1987, 54-58

Fukushima K, et.al., Neocognitron: A neural network model
for a mechanism of visual pattern recognition, IEEE Trans.
on Sys. Man, Cybernet., SMC-13, No.5, 1983, 826-834

327



Georgopoulos A, et. al., Neuronal population coding of
movement direction, Science, 233, 1986, 1416-1419

Gilbert S, Implementing Artificial Neural Networks in
Integrated Circuitry: A design proposal for
Backpropagation, DTIC Tech Report TR-810, Nov 1988

Giles C, Learning and generalization in high order neural
networks: An overview, unpublished

Goddard N, Lynne K, Mintz T, Rochester Connectionist
Simulator, Dept of Computer Science University of
Rochester, TR 233, 1987

Goles E, Vichniac G, Lyapunov functions for parallel
neural networks, Neural Networks for Computing, J. Denton
(ed), American Inst. Physics,1986, 165-181

Griffith J, Randomly connected networks of neurons,
Mathematical Neurobiology, Academic Press, 1971, 67-75,
82-85

Grossberg S, Adaptive pattern classification and universal
recoding: I. Parallel development and coding of neural
feature detectors, Biol. Cybernet. 23, 1976 121-134

Grossberg S, Adaptive pattern classification and universal
recoding: II. Feedback, expectation, olfaction illusions,
Biol. Cybernet. 23, 1976 187-202

Heath N, The Hypercube: A Tutorial Overview in Hypercube
Multiprocessors 1986, M. Heath (ed), SIAM, Philadelphia,
1986, 7-10

Hockney R, Jesshope C, Parallel Computer 2, Architecture,
Programming and Algorithms, Adam Hilger, Philadelphia,
1988

Hamaker V, Vranesic Z, Zaky S, Computer Organization,
McGraw-Hill, New York, 1984

Hartline D, Synetsim 3.0 Preliminary Distribution Package,
Beskesy Lab Honolulu HI

Hartline D, Synetsim 3.0: A model for simulating
restricted neural networks, Soc. Neurosci. Abstr., Vol 13,
1987

Heath M, The Hypercube: A tutorial overview, Hypercube
Multiprocessors 1986, SIAM, Philadelphia, 1986, 7-10

328



Hecht-Nielsen R, Counterpropagation networks, Applied
Optics, Vol 26, No 23, December 1987, 4979-4984

Hecht-Nielsen R, Neurocomputing: Picking the Human Brain,
IEEE Spectrum, Vol 23, No. 3, Mar 88, 36-41

Hendler J, Marker-passing and microfeatures, Proc. 10th
IJCAI, 1987, 151-154

Hillis W, The Connection machine: a computer architectuLe
based on cellular automata, Physics 10D, 1984, 213-228

Hoffman G, Benson M, Neurons with hysteresis form a
network that can learn without any changes in synaptic
connection strengths, Neural Networks in Computing, J.
Denton (ed), American Instit. Physics, 1986 219-226

Hopfield J, Neural networks and physical systems with
emergent collective computational abilities, Proc. Natl.
Acad. Sci. USA 79, Apr 1982, 2554-2558

Hopfield J, Neurons with graded response have collective
computational properties like those of two-state neurons,
Proc. Natl. Acad. Sci. USA 81, May 1984, 3088-3092

Hopfield J, Learning algorithms and probability
distributions in feed-forward and feed-back networks,
Proc. Natl. Adad. Sci. USA, Vol 84, December 1987,
8429-8433

Hopfield J, Tank D, Computing with neural circuits: A
model, Science, 233, 1986, 625-633

Hopfield J, Tank D, "Neural" computation of decisions in
optimization problems, Biol.Cybernet. 52, 1985, 141-152

Hoppensteadt F, Electrical models of neurons, Lectures in
Applied Mathmatics Vol 19, 1981, 327-344

Howard R, et.al., An associative memory based on an
electronic neural network architecture, IEEE trans. on
Electronic Devices, Vol ED-14, No 7, July 1987, 1553-1556

Huang W, Lippman R, Comparisons between Neural Networks
and conventional classifiers, Proceedings of IEEE First
Annual International Conference on Neural Networks at San
Diego, Vol IV, SOS Printing, San Diego CA, 1987, 485-494

Huberman B, Hogg T, Phase transitions in artificial
intelligence systems, Artificial Intelligence 33, 1987,
155-171

329



Indurkhye B, et al, Optimal partitioning of randomly
generated distributed programs, IEEE Transactions on
Software Engineering, SE12, No 3, Mar 1986, 483-495

Jackel L, et al, Electronic Neural Networks, 1989 Digest
of Papers for the Microcircuit Application Conference,
Orlando FL, Nov 1989, 215-218

Jones M, Feedback as a coindexing mechanism in
connectionist
architectures, Proc. 10th IJCAI, 1987, 602-610

Jones W, Hoskins J, Back-propagation, BYTE, October 1987,
155-162

Josin G, Neural-network Heuristics, three heuristic
algorithms that learn trom experience, BYTE, October 1987
183-192

Kabrisky M, et. al., A multiplexed multi-electrode
semiconductor brain electrode implant, Presented at SMC
Conference Oct 1987 Alexandria Va

Kallstrom M, et. al., Programming Three Parallel
Computers, IEEE Software, January 1988 11-22

Kearns T, A Methodology, Based on Analytical Modeling, for
the Design of Parallel and Distributed Architectures for
Relational Database Query Processors, Ph.D. Dissertation,
Air Force Institute of Technology, may 1987

Kohonen T, Self-Organization and Associative Memory,
Springer-Verlag, Berlin, 1984

Kohonen T, Self-organized formation of feature maps,
Cybernetic Systems, Recognition, Learning,
Self-Organization, Caianello & musso,John Wiley & Sons
Inc. 1984, 3-12

Klopf A, A drive-reinforcement model of single neuron
function: an alternative to the hebbian neuronal model,
Neural Networks for Computing, J. Denker (ed), American
Instit. Physics, 1986, 265-270

Kosko B, Constructing an Associative Memory, BYTE, Sep
1987, 137-144

Kosko B, Adaptive bidirectional associative memories,
Applied Optics, Vol 26, No 23, December 1987, 4947-4960

330



Kruatrachue B, et. al., Grain size Determination for
Parallel
Processing, IEEE Software, January 1988 23-32

Lapedes A, Nonlinear Signal Processing with Neural
Networks: Prediction and System Modeling, Los Alamos
National Laboratory Report LA-UR-87-2662, July 1987

Lawrie D, Access and Alignment of Data in an Array
Processor, IEEE Transactions on Computers, C-24, Dec 1975,
496-503

Levin E, Analyzing Protein Structures with Neural
Networks, Neural Networks for Computing Conferences;
Snowbird, UT, American Institute of Physics, New York,
1986

Linsker R, From basic network principles to neural
architecture: emergance of spatial-opponent cells, Proc.
Natl. Acad. Sci. USA, Vol 83 Oct 1986, 7508-7512

Linsker R, From basic network principles to neural
architecture: emergance of orientation-selective cells,
Proc. Natl. Acad. Sci. USA, Vol 83 Nov 1986,8390-8394

Linsker R, From basic network principles to neural
architecture: emergance of orientation columns, Proc.
Natl. Acad. Sci. USA, Vol 83 Nov 1986, 8779-8783

Lippmann R, An introduction to computing with neural nets,
IEEE ASSP, April 1987 4-22

Madore B, Freedman W., Self-organizing structures,
American Scientist, Vol 75, 1987, 252-259

Malsberg C, Self-organization of orientation sensitive
cells in the striate cortex, Kybernetik Vol 14, 1973,
85-100

McEliece R, et al, The capacity of the Hopfield
associative memory, IEEE Trans on Information Theory, Vol
IT-33, No 4, July 1987, 461-482

Meng B, Parallel Processing makes compiler advances,
Electronic System Design, March 1987, 61-64

Minsky M, Papert S, Perceptrons, MIT Press 1969, 1-20,
161-170

331



Nicol D, Analysis of Optimal Random Program Partitions,
ICASE Report No 86-53, NASA Langley Research Center, Aug
1986

Newcomb R, El-Leithy N, Semistate description of an MOS
neural-type cell, unpublished Univ. Maryland

Palmer J, A VLSI Parallel Supercomputer, in Hypercube
Multiprocessors 1986, M. Heath (ed), SIAM, Philadelphia,
1986, 19-26

Pazzani M, Dyer M, A comparison of concept identification
in human learning and network learning with the
generalized delta rule, Proc. of 10th IJCAI, 1987, 147-150

Peeling S, The Multilayer Perceptron as a Tool for Speech
Pattern Processing Research, Proceedings IoA Autumn
Conference on Speech and Hearing, 1986

Peretto P, Niez J, Stochastic dynamics of neural networks,
IEEE Trans. on Sys, Man, Cybernet., SMC-16, No.1, 1986,
73-83

Pfister G, Norton V, "Hot Spot" Contention and Combining
in Multistage Interconncetion Networks, Proceedings of the
1985 International Conference on Parallel Processing, Aug
1985

Port 0, Computers that come awfully close to thinking,
Business Week, 2 June 1986, 92-96

Qian N, Sejnowski T, Predicting the secondary structure of
globular proteins using neural network models, Neural
Networks for Computing Conference: Snowbird, UT, American
Institute of Physics, New York, 1988

Reggia J, Virtual lateral inhibition in parallel
activation models of associative memory, Proc. 9th IJCAI,
Los Angeles Calf, Aug 1985, 244-248

Rosenblatt F, Two theorems of statistical separability in
the
perceptron, Mechanization of Thought Processes, London,
Her Majesty's Stationary Office, 1959, 421-450

Rumelhart D, McClelland J, Parallel Distributed
Processing:
Explorations in the Microstructure of Cognition, Vol 1:
Foundations, MIT Press, 1986

332



Rumelhart D, McClelland J, Interactive processing through
spreading activation, Interactive Processing in Reading,
L. Erlbaum Assoc. Inc., 1981, 37-60

Serlin 0, Parallel processing: fact or fancy, Datamation,
1 Dec 1985, 93-105

Shaw G, Silverman D, Pearson J, Model of cortical
organization embodying a basis for a theory of information
processing and memory recall, Proc. Natl. Acad. Sci. USA,
Vol 82, Apr 1985 2364-2368

Shrager J, Hogg T, Huberman B, Observation of Phase
transitions in spreading activation networks, Science, Vol
236, May 1987, 1092-1094

Small S, et. al., ISCON: A Network Construction Aid and
Simulator for Connectionist Models, Dept of Computer
Science, University of Rochester, TR 109 April 1983

Stein J, Role of the cerebellum in the visual guidance of
movement, Nature, Vol 323 Sep 1986, 217-221

Stone H, High Performance Computer Architectures,
McGraw-Hill, New York, 1987

Stornetta W, Huberman B, An improved three-layer, back
propagation algorithm, Proc. 1st Intl. Conf. on Neural
Networks, San Diago Calf. 1987

Torras C, Neural network model with rhythm-assimilation
capacity, IEEE Trans, Sys, Man, Cybernet. SMC-16 No. 5,
1986, 680-693

Torre V, Poggio T, A synaptic mechanism underlying
directional selectivity to motion, Proc. R. Soc. Lond. B.
202, 1978, 409-416

Touretzky D, BoltzCONS: reconciling connectionism with the
recursive nature of stacks and trees, 8th Annual Conf. of
the Cognitive Science Society, Aug 1986, 1-12

Touretzky D, Hinton G, Symbols among the neurons: details
of a connectionist inference architecture, Proc. 9th IJCAI
Los Angeles Calf., Aug 1985, 238-243

Tseng P, A Parallelizing Complier For Distributed Memory
Parallel Computers, PhD Dissertation, Carnegie Mellon
University, May 1989

333



Wasserman P, Neural Computing Theory and Practices, Van
Nostrand Reinhold, New York, 1989

Werbos P, Building and understanding adaptive systems, A
statistical numerical approach to factory automation and
brain research, IEEE Trans Syst Man Cybernet, SMC-17 No 1,
1987, 7-20

Widrow B, Winter R, Baxter R, Learning Phenomena in
layered neural networks, IEEE Proceeding 87, 1987, Vol II
411-429

Wolfe M, Multiprocessor synchronization for concurrent
loops, IEEE Software, Jan 1988, 34-42

Wolfram S, Cellular automata as models of complexity,
Nature, Vol 311, Oct 1984, 419-424

Will C, Neural Network Architectures and their
Implications for Next Generation Information Systems,
Proc. 26th Annual Tech Symposium of ACM Wash D.C., 11 June
1987, 32-38

334


